» Articles » PMID: 30449723

Deregulated Expression of Mammalian LncRNA Through Loss of SPT6 Induces R-Loop Formation, Replication Stress, and Cellular Senescence

Overview
Journal Mol Cell
Publisher Cell Press
Specialty Cell Biology
Date 2018 Nov 20
PMID 30449723
Citations 92
Authors
Affiliations
Soon will be listed here.
Abstract

Extensive tracts of the mammalian genome that lack protein-coding function are still transcribed into long noncoding RNA. While these lncRNAs are generally short lived, length restricted, and non-polyadenylated, how their expression is distinguished from protein-coding genes remains enigmatic. Surprisingly, depletion of the ubiquitous Pol-II-associated transcription elongation factor SPT6 promotes a redistribution of H3K36me3 histone marks from active protein coding to lncRNA genes, which correlates with increased lncRNA transcription. SPT6 knockdown also impairs the recruitment of the Integrator complex to chromatin, which results in a transcriptional termination defect for lncRNA genes. This leads to the formation of extended, polyadenylated lncRNAs that are both chromatin restricted and form increased levels of RNA:DNA hybrid (R-loops) that are associated with DNA damage. Additionally, these deregulated lncRNAs overlap with DNA replication origins leading to localized DNA replication stress and a cellular senescence phenotype. Overall, our results underline the importance of restricting lncRNA expression.

Citing Articles

Long non‑coding RNA ABHD11‑AS1 inhibits colorectal cancer progression through interacting with EGFR to suppress the EGFR/ERK signaling pathway.

Tan S, Li S, Xia L, Jiang X, Ren Z, Peng Q Int J Oncol. 2025; 66(3).

PMID: 39950321 PMC: 11844336. DOI: 10.3892/ijo.2025.5726.


Network analysis reveals potential mechanisms that determine the cellular identity of keratinocytes and corneal epithelial cells through the Hox/Gtl2-Dio3 miRNA axis.

Guo Y, Wu W, Chen H, Wang X, Zhang Y, Li S Front Cell Dev Biol. 2025; 13:1475334.

PMID: 39896421 PMC: 11782130. DOI: 10.3389/fcell.2025.1475334.


DSIF factor Spt5 coordinates transcription, maturation and exoribonucleolysis of RNA polymerase II transcripts.

Kus K, Carrique L, Kecman T, Fournier M, Hassanein S, Aydin E Nat Commun. 2025; 16(1):10.

PMID: 39746995 PMC: 11695829. DOI: 10.1038/s41467-024-55063-7.


Defining gene ends: RNA polymerase II CTD threonine 4 phosphorylation marks transcription termination regions genome-wide.

Kopczynska M, Saha U, Romanenko A, Nojima T, Gdula M, Kamieniarz-Gdula K Nucleic Acids Res. 2024; 53(2.

PMID: 39718990 PMC: 11754735. DOI: 10.1093/nar/gkae1240.


Global coupling of R-loop dynamics with RNA polymerase II modulates gene expression and early development of Drosophila.

Zhang X, Liang S, Yi Z, Qiao Z, Xu B, Geng H Nucleic Acids Res. 2024; 52(21):13110-13127.

PMID: 39470713 PMC: 11602159. DOI: 10.1093/nar/gkae933.


References
1.
Yoh S, Lucas J, Jones K . The Iws1:Spt6:CTD complex controls cotranscriptional mRNA biosynthesis and HYPB/Setd2-mediated histone H3K36 methylation. Genes Dev. 2009; 22(24):3422-34. PMC: 2607075. DOI: 10.1101/gad.1720008. View

2.
Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M . An atlas of active enhancers across human cell types and tissues. Nature. 2014; 507(7493):455-461. PMC: 5215096. DOI: 10.1038/nature12787. View

3.
Bonnet A, Grosso A, Elkaoutari A, Coleno E, Presle A, Sridhara S . Introns Protect Eukaryotic Genomes from Transcription-Associated Genetic Instability. Mol Cell. 2017; 67(4):608-621.e6. DOI: 10.1016/j.molcel.2017.07.002. View

4.
Nojima T, Gomes T, Grosso A, Kimura H, Dye M, Dhir S . Mammalian NET-Seq Reveals Genome-wide Nascent Transcription Coupled to RNA Processing. Cell. 2015; 161(3):526-540. PMC: 4410947. DOI: 10.1016/j.cell.2015.03.027. View

5.
Nojima T, Rebelo K, Gomes T, Grosso A, Proudfoot N, Carmo-Fonseca M . RNA Polymerase II Phosphorylated on CTD Serine 5 Interacts with the Spliceosome during Co-transcriptional Splicing. Mol Cell. 2018; 72(2):369-379.e4. PMC: 6201815. DOI: 10.1016/j.molcel.2018.09.004. View