6.
Neugebauer K
. On the importance of being co-transcriptional. J Cell Sci. 2002; 115(Pt 20):3865-71.
DOI: 10.1242/jcs.00073.
View
7.
Pelechano V, Wei W, Steinmetz L
. Widespread Co-translational RNA Decay Reveals Ribosome Dynamics. Cell. 2015; 161(6):1400-12.
PMC: 4461875.
DOI: 10.1016/j.cell.2015.05.008.
View
8.
Johnson A
. Rat1p and Xrn1p are functionally interchangeable exoribonucleases that are restricted to and required in the nucleus and cytoplasm, respectively. Mol Cell Biol. 1997; 17(10):6122-30.
PMC: 232462.
DOI: 10.1128/MCB.17.10.6122.
View
9.
Mora Gallardo C, Sanchez de Diego A, Martinez-A C, van Wely K
. Interplay between splicing and transcriptional pausing exerts genome-wide control over alternative polyadenylation. Transcription. 2021; 12(2-3):55-71.
PMC: 8555548.
DOI: 10.1080/21541264.2021.1959244.
View
10.
Imashimizu M, Kireeva M, Lubkowska L, Gotte D, Parks A, Strathern J
. Intrinsic translocation barrier as an initial step in pausing by RNA polymerase II. J Mol Biol. 2012; 425(4):697-712.
PMC: 7649676.
DOI: 10.1016/j.jmb.2012.12.002.
View
11.
Lawson M, Ma W, Bellecourt M, Artsimovitch I, Martin A, Landick R
. Mechanism for the Regulated Control of Bacterial Transcription Termination by a Universal Adaptor Protein. Mol Cell. 2018; 71(6):911-922.e4.
PMC: 6151137.
DOI: 10.1016/j.molcel.2018.07.014.
View
12.
Mandel C, Kaneko S, Zhang H, Gebauer D, Vethantham V, Manley J
. Polyadenylation factor CPSF-73 is the pre-mRNA 3'-end-processing endonuclease. Nature. 2006; 444(7121):953-6.
PMC: 3866582.
DOI: 10.1038/nature05363.
View
13.
Gruber A, Zavolan M
. Alternative cleavage and polyadenylation in health and disease. Nat Rev Genet. 2019; 20(10):599-614.
DOI: 10.1038/s41576-019-0145-z.
View
14.
Booth G, Parua P, Sanso M, Fisher R, Lis J
. Cdk9 regulates a promoter-proximal checkpoint to modulate RNA polymerase II elongation rate in fission yeast. Nat Commun. 2018; 9(1):543.
PMC: 5803247.
DOI: 10.1038/s41467-018-03006-4.
View
15.
Proudfoot N
. Ending the message: poly(A) signals then and now. Genes Dev. 2011; 25(17):1770-82.
PMC: 3175714.
DOI: 10.1101/gad.17268411.
View
16.
Bahat A, Lahav O, Plotnikov A, Leshkowitz D, Dikstein R
. Targeting Spt5-Pol II by Small-Molecule Inhibitors Uncouples Distinct Activities and Reveals Additional Regulatory Roles. Mol Cell. 2019; 76(4):617-631.e4.
DOI: 10.1016/j.molcel.2019.08.024.
View
17.
Connelly S, Manley J
. A functional mRNA polyadenylation signal is required for transcription termination by RNA polymerase II. Genes Dev. 1988; 2(4):440-52.
DOI: 10.1101/gad.2.4.440.
View
18.
Yamaguchi Y, Takagi T, Wada T, Yano K, Furuya A, Sugimoto S
. NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell. 1999; 97(1):41-51.
DOI: 10.1016/s0092-8674(00)80713-8.
View
19.
Fong N, Sheridan R, Ramachandran S, Bentley D
. The pausing zone and control of RNA polymerase II elongation by Spt5: Implications for the pause-release model. Mol Cell. 2022; 82(19):3632-3645.e4.
PMC: 9555879.
DOI: 10.1016/j.molcel.2022.09.001.
View
20.
Maundrell K
. nmt1 of fission yeast. A highly transcribed gene completely repressed by thiamine. J Biol Chem. 1990; 265(19):10857-64.
View