» Articles » PMID: 30101006

An End to End Workflow for Differential Gene Expression Using Affymetrix Microarrays

Overview
Journal F1000Res
Date 2018 Aug 17
PMID 30101006
Citations 36
Authors
Affiliations
Soon will be listed here.
Abstract

In this article, we walk through an end-to-end Affymetrix microarray differential expression workflow using Bioconductor packages. This workflow is directly applicable to current "Gene'' type arrays, e.g.the HuGene or MoGene arrays, but can easily be adapted to similar platforms. The data analyzed here is a typical clinical microarray data set that compares inflamed and non-inflamed colon tissue in two disease subtypes. For each disease, the differential gene expression between inflamed- and non-inflamed colon tissue was analyzed. We will start from the raw data CEL files, show how to import them into a Bioconductor ExpressionSet, perform quality control and normalization and finally differential gene expression (DE) analysis, followed by some enrichment analysis.

Citing Articles

Discovering promising drug candidates for Parkinson's disease: integrating miRNA and DEG analysis with molecular dynamics and MMPBSA.

Ishtiaq B, Paracha R, Nisar M, Ejaz S, Hussain Z J Comput Aided Mol Des. 2025; 39(1):8.

PMID: 39971814 DOI: 10.1007/s10822-025-00586-4.


A Network and Pathway Analysis of Genes Associated With Atrial Fibrillation.

Zeng M, Yang X, Chen Y, Fan J, Cao L, Wang M Cardiovasc Ther. 2025; 2024:7054039.

PMID: 39742001 PMC: 11470814. DOI: 10.1155/2024/7054039.


Transcriptome Profiling of Mouse Embryonic Fibroblast Spontaneous Immortalization: A Comparative Analysis.

Loaiza-Moss J, Braun U, Leitges M Int J Mol Sci. 2024; 25(15).

PMID: 39125691 PMC: 11311763. DOI: 10.3390/ijms25158116.


A unified metric of human immune health.

Sparks R, Rachmaninoff N, Lau W, Hirsch D, Bansal N, Martins A Nat Med. 2024; 30(9):2461-2472.

PMID: 38961223 DOI: 10.1038/s41591-024-03092-6.


Impact on the Transcriptome of Proton Beam Irradiation Targeted at Healthy Cardiac Tissue of Mice.

Sala C, Tarozzi M, Simonetti G, Pazzaglia M, Cammarata F, Russo G Cancers (Basel). 2024; 16(8).

PMID: 38672554 PMC: 11048382. DOI: 10.3390/cancers16081471.


References
1.
Croft D, Mundo A, Haw R, Milacic M, Weiser J, Wu G . The Reactome pathway knowledgebase. Nucleic Acids Res. 2013; 42(Database issue):D472-7. PMC: 3965010. DOI: 10.1093/nar/gkt1102. View

2.
Huber W, von Heydebreck A, Sultmann H, Poustka A, Vingron M . Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics. 2002; 18 Suppl 1:S96-104. DOI: 10.1093/bioinformatics/18.suppl_1.s96. View

3.
Irizarry R, Bolstad B, Collin F, Cope L, Hobbs B, Speed T . Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 2003; 31(4):e15. PMC: 150247. DOI: 10.1093/nar/gng015. View

4.
Ritchie M, Phipson B, Wu D, Hu Y, Law C, Shi W . limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015; 43(7):e47. PMC: 4402510. DOI: 10.1093/nar/gkv007. View

5.
Ashburner M, Ball C, Blake J, Botstein D, Butler H, Cherry J . Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000; 25(1):25-9. PMC: 3037419. DOI: 10.1038/75556. View