» Articles » PMID: 29401521

RLE Plots: Visualizing Unwanted Variation in High Dimensional Data

Overview
Journal PLoS One
Date 2018 Feb 6
PMID 29401521
Citations 43
Authors
Affiliations
Soon will be listed here.
Abstract

Unwanted variation can be highly problematic and so its detection is often crucial. Relative log expression (RLE) plots are a powerful tool for visualizing such variation in high dimensional data. We provide a detailed examination of these plots, with the aid of examples and simulation, explaining what they are and what they can reveal. RLE plots are particularly useful for assessing whether a procedure aimed at removing unwanted variation, i.e. a normalization procedure, has been successful. These plots, while originally devised for gene expression data from microarrays, can also be used to reveal unwanted variation in many other kinds of high dimensional data, where such variation can be problematic.

Citing Articles

Discovering promising drug candidates for Parkinson's disease: integrating miRNA and DEG analysis with molecular dynamics and MMPBSA.

Ishtiaq B, Paracha R, Nisar M, Ejaz S, Hussain Z J Comput Aided Mol Des. 2025; 39(1):8.

PMID: 39971814 DOI: 10.1007/s10822-025-00586-4.


Identifying the HIV-Resistance-Related Factors and Regulatory Network via Multi-Omics Analyses.

Long X, Liu G, Liu X, Zhang C, Shi L, Zhu Z Int J Mol Sci. 2024; 25(21).

PMID: 39519306 PMC: 11546959. DOI: 10.3390/ijms252111757.


Amino Acid Compound 2 (AAC2) Treatment Counteracts Insulin-Induced Synaptic Gene Expression and Seizure-Related Mortality in a Mouse Model of Alzheimer's Disease.

Deng Z, Lee A, Lin T, Taneja S, Kowdley D, Leung J Int J Mol Sci. 2024; 25(21).

PMID: 39519239 PMC: 11546384. DOI: 10.3390/ijms252111689.


DeSide: A unified deep learning approach for cellular deconvolution of tumor microenvironment.

Xiong X, Liu Y, Pu D, Yang Z, Bi Z, Tian L Proc Natl Acad Sci U S A. 2024; 121(46):e2407096121.

PMID: 39514318 PMC: 11573681. DOI: 10.1073/pnas.2407096121.


Leveraging a new data resource to define the response of Cryptococcus neoformans to environmental signals.

Kang Y, Jung J, Brown H, Mateusiak C, Doering T, Brent M Genetics. 2024; 229(1):1-29.

PMID: 39485829 PMC: 11708910. DOI: 10.1093/genetics/iyae178.


References
1.
Irizarry R, Bolstad B, Collin F, Cope L, Hobbs B, Speed T . Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 2003; 31(4):e15. PMC: 150247. DOI: 10.1093/nar/gng015. View

2.
Vawter M, Evans S, Choudary P, Tomita H, Meador-Woodruff J, Molnar M . Gender-specific gene expression in post-mortem human brain: localization to sex chromosomes. Neuropsychopharmacology. 2003; 29(2):373-84. PMC: 3130534. DOI: 10.1038/sj.npp.1300337. View

3.
Gagnon-Bartsch J, Speed T . Using control genes to correct for unwanted variation in microarray data. Biostatistics. 2011; 13(3):539-52. PMC: 3577104. DOI: 10.1093/biostatistics/kxr034. View