» Articles » PMID: 26674615

RNA-Seq Workflow: Gene-level Exploratory Analysis and Differential Expression

Overview
Journal F1000Res
Date 2015 Dec 18
PMID 26674615
Citations 207
Authors
Affiliations
Soon will be listed here.
Abstract

Here we walk through an end-to-end gene-level RNA-Seq differential expression workflow using Bioconductor packages. We will start from the FASTQ files, show how these were aligned to the reference genome, and prepare a count matrix which tallies the number of RNA-seq reads/fragments within each gene for each sample. We will perform exploratory data analysis (EDA) for quality assessment and to explore the relationship between samples, perform differential gene expression analysis, and visually explore the results.

Citing Articles

Roux-en-Y gastric bypass-associated fecal tyramine promotes colon cancer risk via increased DNA damage, cell proliferation, and inflammation.

Glymenaki M, Curio S, Shrestha S, Zhong Q, Rushton L, Barry R Microbiome. 2025; 13(1):60.

PMID: 40022152 PMC: 11869571. DOI: 10.1186/s40168-025-02049-2.


Differential Gene Expression Analysis of Whole Blood Transcriptome Between Young and Old Border Collie Dogs.

Jonas D, Tatrai K, Rekasi Z, Egyed B, Kubinyi E Vet Sci. 2025; 12(2).

PMID: 40005846 PMC: 11860333. DOI: 10.3390/vetsci12020086.


RNA sequencing identifies and as predictive genes of aging CD264 human mesenchymal stem cells at an early passage.

Giler M, Tucker H, Foote A, Francis A, Madsen S, Liu Y Cytotechnology. 2025; 77(2):63.

PMID: 39980838 PMC: 11839963. DOI: 10.1007/s10616-025-00724-8.


Worm Perturb-Seq: massively parallel whole-animal RNAi and RNA-seq.

Zhang H, Li X, Song D, Yukselen O, Nanda S, Kucukural A bioRxiv. 2025; .

PMID: 39975282 PMC: 11838469. DOI: 10.1101/2025.02.02.636107.


The impact of circadian rhythm disruption on oxaliplatin tolerability and pharmacokinetics in Cry1Cry2 mice under constant darkness.

Akyel Y, Seyhan N, Gul S, Celik M, Taskin A, Selby C Arch Toxicol. 2025; .

PMID: 39903276 DOI: 10.1007/s00204-025-03968-7.


References
1.
Anders S, Pyl P, Huber W . HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 2014; 31(2):166-9. PMC: 4287950. DOI: 10.1093/bioinformatics/btu638. View

2.
Robinson M, McCarthy D, Smyth G . edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2009; 26(1):139-40. PMC: 2796818. DOI: 10.1093/bioinformatics/btp616. View

3.
Leng N, Dawson J, Thomson J, Ruotti V, Rissman A, Smits B . EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics. 2013; 29(8):1035-43. PMC: 3624807. DOI: 10.1093/bioinformatics/btt087. View

4.
Hardcastle T, Kelly K . baySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics. 2010; 11:422. PMC: 2928208. DOI: 10.1186/1471-2105-11-422. View

5.
Risso D, Ngai J, Speed T, Dudoit S . Normalization of RNA-seq data using factor analysis of control genes or samples. Nat Biotechnol. 2014; 32(9):896-902. PMC: 4404308. DOI: 10.1038/nbt.2931. View