Wang Z, Qi X, Ren X, Lin Y, Zeng F, Wang Q
mLife. 2025; 4(1):1-16.
PMID: 40026576
PMC: 11868838.
DOI: 10.1002/mlf2.12167.
Vercauteren S, Fiesack S, Maroc L, Verstraeten N, Dewachter L, Michiels J
FEMS Microbiol Rev. 2024; 48(5).
PMID: 39085047
PMC: 11409895.
DOI: 10.1093/femsre/fuae020.
Kuang Z, Yan X, Yuan Y, Wang R, Zhu H, Wang Y
Synth Syst Biotechnol. 2024; 9(4):793-808.
PMID: 39072145
PMC: 11277822.
DOI: 10.1016/j.synbio.2024.06.008.
Deng L, Zhou Y, Cai Z, Zhu J, Li Z, Bao Z
Sci Adv. 2024; 10(20):eadj9382.
PMID: 38748797
PMC: 11095455.
DOI: 10.1126/sciadv.adj9382.
Roy K, Smith J, Li S, Vonesch S, Nguyen M, Burnett W
bioRxiv. 2024; .
PMID: 38352467
PMC: 10862795.
DOI: 10.1101/2024.02.02.577784.
Automation protocol for high-efficiency and high-quality genomic DNA extraction from Saccharomyces cerevisiae.
Alperovich N, Scott B, Ross D
PLoS One. 2023; 18(10):e0292401.
PMID: 37847718
PMC: 10581484.
DOI: 10.1371/journal.pone.0292401.
Controlling circuitry underlies the growth optimization of Saccharomyces cerevisiae.
Nguyen V, Xue P, Li Y, Zhao H, Lu T
Metab Eng. 2023; 80:173-183.
PMID: 37739159
PMC: 11089650.
DOI: 10.1016/j.ymben.2023.09.013.
The biological principles and advanced applications of DSB repair in CRISPR-mediated yeast genome editing.
Bai W, Huang M, Li C, Li J
Synth Syst Biotechnol. 2023; 8(4):584-596.
PMID: 37711546
PMC: 10497738.
DOI: 10.1016/j.synbio.2023.08.007.
CRI-SPA: a high-throughput method for systematic genetic editing of yeast libraries.
Cachera P, Olsson H, Coumou H, Jensen M, Sanchez B, Strucko T
Nucleic Acids Res. 2023; 51(17):e91.
PMID: 37572348
PMC: 10516668.
DOI: 10.1093/nar/gkad656.
Practical Approaches for the Yeast Genome Modification.
Stepchenkova E, Zadorsky S, Shumega A, Aksenova A
Int J Mol Sci. 2023; 24(15).
PMID: 37569333
PMC: 10419131.
DOI: 10.3390/ijms241511960.
Base editor screens for in situ mutational scanning at scale.
Lue N, Liau B
Mol Cell. 2023; 83(13):2167-2187.
PMID: 37390819
PMC: 10330937.
DOI: 10.1016/j.molcel.2023.06.009.
A Cas3-base editing tool for targetable in vivo mutagenesis.
Zimmermann A, Prieto-Vivas J, Cautereels C, Gorkovskiy A, Steensels J, Van de Peer Y
Nat Commun. 2023; 14(1):3389.
PMID: 37296137
PMC: 10256805.
DOI: 10.1038/s41467-023-39087-z.
High-content CRISPR screening.
Bock C, Datlinger P, Chardon F, Coelho M, Dong M, Lawson K
Nat Rev Methods Primers. 2023; 2(1).
PMID: 37214176
PMC: 10200264.
DOI: 10.1038/s43586-022-00098-7.
Gene-by-environment interactions are pervasive among natural genetic variants.
Chen S, Kern A, Ang R, Xie Y, Fraser H
Cell Genom. 2023; 3(4):100273.
PMID: 37082145
PMC: 10112290.
DOI: 10.1016/j.xgen.2023.100273.
Widespread epistasis among beneficial genetic variants revealed by high-throughput genome editing.
Ang R, Chen S, Kern A, Xie Y, Fraser H
Cell Genom. 2023; 3(4):100260.
PMID: 37082144
PMC: 10112194.
DOI: 10.1016/j.xgen.2023.100260.
Analyzing CRISPR screens in non-conventional microbes.
Trivedi V, Ramesh A, Wheeldon I
J Ind Microbiol Biotechnol. 2023; 50(1).
PMID: 36928506
PMC: 10124124.
DOI: 10.1093/jimb/kuad006.
Metabolic Engineering of Microorganisms to Produce Pyruvate and Derived Compounds.
Luo Q, Ding N, Liu Y, Zhang H, Fang Y, Yin L
Molecules. 2023; 28(3).
PMID: 36771084
PMC: 9919917.
DOI: 10.3390/molecules28031418.
High throughput mutagenesis and screening for yeast engineering.
Holland K, Blazeck J
J Biol Eng. 2022; 16(1):37.
PMID: 36575525
PMC: 9793380.
DOI: 10.1186/s13036-022-00315-7.
Construction and evaluation of gRNA arrays for multiplex CRISPR-Cas9.
Zun G, Dobersek K, Petrovic U
Yeast. 2022; 40(1):32-41.
PMID: 36536407
PMC: 10107897.
DOI: 10.1002/yea.3833.
Genome-scale top-down strategy to generate viable genome-reduced phages.
Yuan S, Shi J, Jiang J, Ma Y
Nucleic Acids Res. 2022; 50(22):13183-13197.
PMID: 36511873
PMC: 9825161.
DOI: 10.1093/nar/gkac1168.