» Articles » PMID: 29734295

Genome-scale Engineering of Saccharomyces Cerevisiae with Single-nucleotide Precision

Overview
Journal Nat Biotechnol
Specialty Biotechnology
Date 2018 May 8
PMID 29734295
Citations 66
Authors
Affiliations
Soon will be listed here.
Abstract

We developed a CRISPR-Cas9- and homology-directed-repair-assisted genome-scale engineering method named CHAnGE that can rapidly output tens of thousands of specific genetic variants in yeast. More than 98% of target sequences were efficiently edited with an average frequency of 82%. We validate the single-nucleotide resolution genome-editing capability of this technology by creating a genome-wide gene disruption collection and apply our method to improve tolerance to growth inhibitors.

Citing Articles

Synthetic evolution of for biomanufacturing: Approaches and applications.

Wang Z, Qi X, Ren X, Lin Y, Zeng F, Wang Q mLife. 2025; 4(1):1-16.

PMID: 40026576 PMC: 11868838. DOI: 10.1002/mlf2.12167.


The rise and future of CRISPR-based approaches for high-throughput genomics.

Vercauteren S, Fiesack S, Maroc L, Verstraeten N, Dewachter L, Michiels J FEMS Microbiol Rev. 2024; 48(5).

PMID: 39085047 PMC: 11409895. DOI: 10.1093/femsre/fuae020.


Advances in stress-tolerance elements for microbial cell factories.

Kuang Z, Yan X, Yuan Y, Wang R, Zhu H, Wang Y Synth Syst Biotechnol. 2024; 9(4):793-808.

PMID: 39072145 PMC: 11277822. DOI: 10.1016/j.synbio.2024.06.008.


Massively parallel CRISPR-assisted homologous recombination enables saturation editing of full-length endogenous genes in yeast.

Deng L, Zhou Y, Cai Z, Zhu J, Li Z, Bao Z Sci Adv. 2024; 10(20):eadj9382.

PMID: 38748797 PMC: 11095455. DOI: 10.1126/sciadv.adj9382.


Dissecting quantitative trait nucleotides by saturation genome editing.

Roy K, Smith J, Li S, Vonesch S, Nguyen M, Burnett W bioRxiv. 2024; .

PMID: 38352467 PMC: 10862795. DOI: 10.1101/2024.02.02.577784.


References
1.
Bao Z, Xiao H, Liang J, Zhang L, Xiong X, Sun N . Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae. ACS Synth Biol. 2014; 4(5):585-94. DOI: 10.1021/sb500255k. View

2.
Sandoval N, Kim J, Glebes T, Reeder P, Aucoin H, Warner J . Strategy for directing combinatorial genome engineering in Escherichia coli. Proc Natl Acad Sci U S A. 2012; 109(26):10540-5. PMC: 3387050. DOI: 10.1073/pnas.1206299109. View

3.
Wang H, Isaacs F, Carr P, Sun Z, Xu G, Forest C . Programming cells by multiplex genome engineering and accelerated evolution. Nature. 2009; 460(7257):894-898. PMC: 4590770. DOI: 10.1038/nature08187. View

4.
Naito Y, Hino K, Bono H, Ui-Tei K . CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics. 2014; 31(7):1120-3. PMC: 4382898. DOI: 10.1093/bioinformatics/btu743. View

5.
Yunus A, Lima C . Structure of the Siz/PIAS SUMO E3 ligase Siz1 and determinants required for SUMO modification of PCNA. Mol Cell. 2009; 35(5):669-82. PMC: 2771690. DOI: 10.1016/j.molcel.2009.07.013. View