» Articles » PMID: 19748360

Structure of the Siz/PIAS SUMO E3 Ligase Siz1 and Determinants Required for SUMO Modification of PCNA

Overview
Journal Mol Cell
Publisher Cell Press
Specialty Cell Biology
Date 2009 Sep 15
PMID 19748360
Citations 73
Authors
Affiliations
Soon will be listed here.
Abstract

Siz1 is a founding member of the Siz/PIAS RING family of SUMO E3 ligases. The X-ray structure of an active Siz1 ligase revealed an elongated tripartite architecture comprised of an N-terminal PINIT domain, a central zinc-containing RING-like SP-RING domain, and a C-terminal domain we term the SP-CTD. Structure-based mutational analysis and biochemical studies show that the SP-RING and SP-CTD are required for activation of the E2 approximately SUMO thioester, while the PINIT domain is essential for redirecting SUMO conjugation to the proliferating cell nuclear antigen (PCNA) at lysine 164, a nonconsensus lysine residue that is not modified by the SUMO E2 in the absence of Siz1. Mutational analysis of Siz1 and PCNA revealed surfaces on both proteins that are required for efficient SUMO modification of PCNA in vitro and in vivo.

Citing Articles

Charting the evolutionary path of the SUMO modification system in plants reveals molecular hardwiring of development to stress adaptation.

Ghosh S, Mellado Sanchez M, Sue-Ob K, Roy D, Jones A, Blazquez M Plant Cell. 2024; 36(9):3131-3144.

PMID: 38923935 PMC: 11371177. DOI: 10.1093/plcell/koae192.


A SUMO E3 ligase promotes long non-coding RNA transcription to regulate small RNA-directed DNA elimination.

Shehzada S, Noto T, Saksouk J, Mochizuki K Elife. 2024; 13.

PMID: 38197489 PMC: 10830130. DOI: 10.7554/eLife.95337.


UBE2A and UBE2B are recruited by an atypical E3 ligase module in UBR4.

Barnsby-Greer L, Mabbitt P, Dery M, Squair D, Wood N, Lamoliatte F Nat Struct Mol Biol. 2024; 31(2):351-363.

PMID: 38182926 PMC: 10873205. DOI: 10.1038/s41594-023-01192-4.


Pervasive SUMOylation of heterochromatin and piRNA pathway proteins.

Ninova M, Holmes H, Lomenick B, Fejes Toth K, Aravin A Cell Genom. 2023; 3(7):100329.

PMID: 37492097 PMC: 10363806. DOI: 10.1016/j.xgen.2023.100329.


Paradoxes of Cellular SUMOylation Regulation: A Role of Biomolecular Condensates?.

Cheng X, Yang W, Lin W, Mei F Pharmacol Rev. 2023; 75(5):979-1006.

PMID: 37137717 PMC: 10441629. DOI: 10.1124/pharmrev.122.000784.


References
1.
Zheng N, Wang P, Jeffrey P, Pavletich N . Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell. 2000; 102(4):533-9. DOI: 10.1016/s0092-8674(00)00057-x. View

2.
Johnson E . Protein modification by SUMO. Annu Rev Biochem. 2004; 73:355-82. DOI: 10.1146/annurev.biochem.73.011303.074118. View

3.
Jonsson Z, Hindges R, Hubscher U . Regulation of DNA replication and repair proteins through interaction with the front side of proliferating cell nuclear antigen. EMBO J. 1998; 17(8):2412-25. PMC: 1170584. DOI: 10.1093/emboj/17.8.2412. View

4.
Hoege C, Pfander B, Moldovan G, Pyrowolakis G, Jentsch S . RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature. 2002; 419(6903):135-41. DOI: 10.1038/nature00991. View

5.
Pickart C . Mechanisms underlying ubiquitination. Annu Rev Biochem. 2001; 70:503-33. DOI: 10.1146/annurev.biochem.70.1.503. View