» Articles » PMID: 29551301

Dissecting the Functional Consequences of De Novo DNA Methylation Dynamics in Human Motor Neuron Differentiation and Physiology

Abstract

The somatic DNA methylation (DNAme) landscape is established early in development but remains highly dynamic within focal regions that overlap with gene regulatory elements. The significance of these dynamic changes, particularly in the central nervous system, remains unresolved. Here, we utilize a powerful human embryonic stem cell differentiation model for the generation of motor neurons (MNs) in combination with genetic mutations in the de novo DNAme machinery. We quantitatively dissect the role of DNAme in directing somatic cell fate with high-resolution genome-wide bisulfite-, bulk-, and single-cell-RNA sequencing. We find defects in neuralization and MN differentiation in DNMT3A knockouts (KO) that can be rescued by the targeting of DNAme to key developmental loci using catalytically inactive dCas9. We also find decreased dendritic arborization and altered electrophysiological properties in DNMT3A KO MNs. Our work provides a list of DNMT3A-regulated targets and a mechanistic link between de novo DNAme, cellular differentiation, and human MN function.

Citing Articles

Tissue-specific roles of de novo DNA methyltransferases.

Toth D, Szeri F, Ashaber M, Muazu M, Szekvolgyi L, Aranyi T Epigenetics Chromatin. 2025; 18(1):5.

PMID: 39819598 PMC: 11740433. DOI: 10.1186/s13072-024-00566-2.


Opposing roles of p38α-mediated phosphorylation and PRMT1-mediated arginine methylation in driving TDP-43 proteinopathy.

Aikio M, Odeh H, Wobst H, Lee B, Chan U, Mauna J Cell Rep. 2025; 44(1):115205.

PMID: 39817908 PMC: 11831926. DOI: 10.1016/j.celrep.2024.115205.


MCL-1 regulates cellular transitions during oligodendrocyte development.

Gil M, Hanna M, Gama V bioRxiv. 2025; .

PMID: 39763750 PMC: 11702758. DOI: 10.1101/2024.12.20.629796.


Incorporation of decellularized-ECM in graphene-based scaffolds enhances axonal outgrowth and branching in neuro-muscular co-cultures.

Serna 3rd C, Sandepudi K, Keate R, Zhang S, Cotton K, De La Isla A Sci Prog. 2024; 107(3):368504241281469.

PMID: 39314156 PMC: 11423365. DOI: 10.1177/00368504241281469.


Targeting neuronal epigenomes for brain rejuvenation.

Zocher S EMBO J. 2024; 43(16):3312-3326.

PMID: 39009672 PMC: 11329789. DOI: 10.1038/s44318-024-00148-8.


References
1.
Durinck S, Spellman P, Birney E, Huber W . Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat Protoc. 2009; 4(8):1184-91. PMC: 3159387. DOI: 10.1038/nprot.2009.97. View

2.
Galonska C, Charlton J, Mattei A, Donaghey J, Clement K, Gu H . Genome-wide tracking of dCas9-methyltransferase footprints. Nat Commun. 2018; 9(1):597. PMC: 5807365. DOI: 10.1038/s41467-017-02708-5. View

3.
Sugimori M, Nagao M, Bertrand N, Parras C, Guillemot F, Nakafuku M . Combinatorial actions of patterning and HLH transcription factors in the spatiotemporal control of neurogenesis and gliogenesis in the developing spinal cord. Development. 2007; 134(8):1617-29. DOI: 10.1242/dev.001255. View

4.
Ku M, Koche R, Rheinbay E, Mendenhall E, Endoh M, Mikkelsen T . Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genet. 2008; 4(10):e1000242. PMC: 2567431. DOI: 10.1371/journal.pgen.1000242. View

5.
. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012; 489(7414):57-74. PMC: 3439153. DOI: 10.1038/nature11247. View