» Articles » PMID: 27669025

Two Distinct RNase Activities of CRISPR-C2c2 Enable Guide-RNA Processing and RNA Detection

Overview
Journal Nature
Specialty Science
Date 2016 Sep 27
PMID 27669025
Citations 448
Authors
Affiliations
Soon will be listed here.
Abstract

Bacterial adaptive immune systems use CRISPRs (clustered regularly interspaced short palindromic repeats) and CRISPR-associated (Cas) proteins for RNA-guided nucleic acid cleavage. Although most prokaryotic adaptive immune systems generally target DNA substrates, type III and VI CRISPR systems direct interference complexes against single-stranded RNA substrates. In type VI systems, the single-subunit C2c2 protein functions as an RNA-guided RNA endonuclease (RNase). How this enzyme acquires mature CRISPR RNAs (crRNAs) that are essential for immune surveillance and how it carries out crRNA-mediated RNA cleavage remain unclear. Here we show that bacterial C2c2 possesses a unique RNase activity responsible for CRISPR RNA maturation that is distinct from its RNA-activated single-stranded RNA degradation activity. These dual RNase functions are chemically and mechanistically different from each other and from the crRNA-processing behaviour of the evolutionarily unrelated CRISPR enzyme Cpf1 (ref. 11). The two RNase activities of C2c2 enable multiplexed processing and loading of guide RNAs that in turn allow sensitive detection of cellular transcripts.

Citing Articles

Structure-Guided design of Cas12a variants improves detection of nucleic acids.

Tong X, Li T, Zhang K, Zhao D, Zhang Y, Yin H Cell Insight. 2025; 4(2):100228.

PMID: 40061934 PMC: 11889556. DOI: 10.1016/j.cellin.2025.100228.


A Streamlined Point-of-Care CRISPR Test for Tuberculosis Detection Directly from Sputum.

Dunkley O, Bell A, Modi N, Huang Y, Tseng S, Reiss R medRxiv. 2025; .

PMID: 40034782 PMC: 11875272. DOI: 10.1101/2025.02.19.25322517.


A CRISPR-Cas-based recombinase polymerase amplification assay for ultra-sensitive detection of active infections.

Alvarez-Rodriguez A, Li Z, Jin B, Stijlemans B, Geldhof P, Magez S Front Mol Biosci. 2025; 12:1512970.

PMID: 40026698 PMC: 11867955. DOI: 10.3389/fmolb.2025.1512970.


Cytosolic CRISPR RNAs for efficient application of RNA-targeting CRISPR-Cas systems.

Cheng E, Lam J, Kwon S EMBO Rep. 2025; .

PMID: 40011676 DOI: 10.1038/s44319-025-00399-4.


Exploiting the Specificity of CRISPR/Cas System for Nucleic Acids Amplification-Free Disease Diagnostics in the Point-of-Care.

Yee B, Ali N, Mohd-Naim N, Ahmed M Chem Bio Eng. 2025; 1(4):330-339.

PMID: 39974464 PMC: 11835143. DOI: 10.1021/cbe.3c00112.


References
1.
Li H . Structural Principles of CRISPR RNA Processing. Structure. 2014; 23(1):13-20. PMC: 4286480. DOI: 10.1016/j.str.2014.10.006. View

2.
Nam K, Haitjema C, Liu X, Ding F, Wang H, DeLisa M . Cas5d protein processes pre-crRNA and assembles into a cascade-like interference complex in subtype I-C/Dvulg CRISPR-Cas system. Structure. 2012; 20(9):1574-84. PMC: 3479641. DOI: 10.1016/j.str.2012.06.016. View

3.
McIlwain D, Berger T, Mak T . Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol. 2013; 5(4):a008656. PMC: 3683896. DOI: 10.1101/cshperspect.a008656. View

4.
Haurwitz R, Jinek M, Wiedenheft B, Zhou K, Doudna J . Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science. 2010; 329(5997):1355-8. PMC: 3133607. DOI: 10.1126/science.1192272. View

5.
Shmakov S, Abudayyeh O, Makarova K, Wolf Y, Gootenberg J, Semenova E . Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems. Mol Cell. 2015; 60(3):385-97. PMC: 4660269. DOI: 10.1016/j.molcel.2015.10.008. View