» Articles » PMID: 22841292

Cas5d Protein Processes Pre-crRNA and Assembles into a Cascade-like Interference Complex in Subtype I-C/Dvulg CRISPR-Cas System

Overview
Journal Structure
Publisher Cell Press
Date 2012 Jul 31
PMID 22841292
Citations 109
Authors
Affiliations
Soon will be listed here.
Abstract

Clustered regularly interspaced short palindromic repeats (CRISPRs), together with an operon of CRISPR-associated (Cas) proteins, form an RNA-based prokaryotic immune system against exogenous genetic elements. Cas5 family proteins are found in several type I CRISPR-Cas systems. Here, we report the molecular function of subtype I-C/Dvulg Cas5d from Bacillus halodurans. We show that Cas5d cleaves pre-crRNA into unit length by recognizing both the hairpin structure and the 3' single stranded sequence in the CRISPR repeat region. Cas5d structure reveals a ferredoxin domain-based architecture and a catalytic triad formed by Y46, K116, and H117 residues. We further show that after pre-crRNA processing, Cas5d assembles with crRNA, Csd1, and Csd2 proteins to form a multi-sub-unit interference complex similar to Escherichia coli Cascade (CRISPR-associated complex for antiviral defense) in architecture. Our results suggest that formation of a crRNA-presenting Cascade-like complex is likely a common theme among type I CRISPR subtypes.

Citing Articles

Research Progress on the Mechanism and Application of the Type I CRISPR-Cas System.

Yang P, Zhang S, Hu D, Li X, Guo Y, Guo H Int J Mol Sci. 2024; 25(23).

PMID: 39684256 PMC: 11640852. DOI: 10.3390/ijms252312544.


Exploiting activation and inactivation mechanisms in type I-C CRISPR-Cas3 for genome-editing applications.

Hu C, Myers M, Zhou X, Hou Z, Lozen M, Nam K Mol Cell. 2024; 84(3):463-475.e5.

PMID: 38242128 PMC: 10857747. DOI: 10.1016/j.molcel.2023.12.034.


Development and implementation of a Type I-C CRISPR-based programmable repression system for .

Geslewitz W, Cardenas A, Zhou X, Zhang Y, Criss A, Seifert H mBio. 2023; 15(2):e0302523.

PMID: 38126782 PMC: 10865793. DOI: 10.1128/mbio.03025-23.


Bacteriophages suppress CRISPR-Cas immunity using RNA-based anti-CRISPRs.

Camara-Wilpert S, Mayo-Munoz D, Russel J, Fagerlund R, Madsen J, Fineran P Nature. 2023; 623(7987):601-607.

PMID: 37853129 PMC: 10651486. DOI: 10.1038/s41586-023-06612-5.


CRISPRe: An innate transcriptional enhancer for endogenous genes in CRISPR-Cas immunity.

Li D, Chen Y, Huang F, Wang J, Li X, Yang Y iScience. 2023; 26(10):107814.

PMID: 37766991 PMC: 10520945. DOI: 10.1016/j.isci.2023.107814.


References
1.
Bolotin A, Quinquis B, Sorokin A, Ehrlich S . Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology (Reading). 2005; 151(Pt 8):2551-2561. DOI: 10.1099/mic.0.28048-0. View

2.
Wang R, Preamplume G, Terns M, Terns R, Li H . Interaction of the Cas6 riboendonuclease with CRISPR RNAs: recognition and cleavage. Structure. 2011; 19(2):257-64. PMC: 3154685. DOI: 10.1016/j.str.2010.11.014. View

3.
Haurwitz R, Jinek M, Wiedenheft B, Zhou K, Doudna J . Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science. 2010; 329(5997):1355-8. PMC: 3133607. DOI: 10.1126/science.1192272. View

4.
Pourcel C, Salvignol G, Vergnaud G . CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology (Reading). 2005; 151(Pt 3):653-663. DOI: 10.1099/mic.0.27437-0. View

5.
Ke A, Doudna J . Crystallization of RNA and RNA-protein complexes. Methods. 2004; 34(3):408-14. DOI: 10.1016/j.ymeth.2004.03.027. View