6.
Balendra R, Isaacs A
. C9orf72-mediated ALS and FTD: multiple pathways to disease. Nat Rev Neurol. 2018; 14(9):544-558.
PMC: 6417666.
DOI: 10.1038/s41582-018-0047-2.
View
7.
Mizielinska S, Gronke S, Niccoli T, Ridler C, Clayton E, Devoy A
. C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins. Science. 2014; 345(6201):1192-1194.
PMC: 4944841.
DOI: 10.1126/science.1256800.
View
8.
Mathiesen S, Lock J, Schoderboeck L, Abraham W, Hughes S
. CNS Transduction Benefits of AAV-PHP.eB over AAV9 Are Dependent on Administration Route and Mouse Strain. Mol Ther Methods Clin Dev. 2020; 19:447-458.
PMC: 7683292.
DOI: 10.1016/j.omtm.2020.10.011.
View
9.
Fernandopulle M, Prestil R, Grunseich C, Wang C, Gan L, Ward M
. Transcription Factor-Mediated Differentiation of Human iPSCs into Neurons. Curr Protoc Cell Biol. 2018; 79(1):e51.
PMC: 6993937.
DOI: 10.1002/cpcb.51.
View
10.
Prudencio M, Humphrey J, Pickles S, Brown A, Hill S, Kachergus J
. Truncated stathmin-2 is a marker of TDP-43 pathology in frontotemporal dementia. J Clin Invest. 2020; 130(11):6080-6092.
PMC: 7598060.
DOI: 10.1172/JCI139741.
View
11.
Bush J, Aikawa H, Fuerst R, Li Y, Ursu A, Meyer S
. Ribonuclease recruitment using a small molecule reduced c9ALS/FTD r(GC) repeat expansion in vitro and in vivo ALS models. Sci Transl Med. 2021; 13(617):eabd5991.
PMC: 9533739.
DOI: 10.1126/scitranslmed.abd5991.
View
12.
Wen X, Tan W, Westergard T, Krishnamurthy K, Markandaiah S, Shi Y
. Antisense proline-arginine RAN dipeptides linked to C9ORF72-ALS/FTD form toxic nuclear aggregates that initiate in vitro and in vivo neuronal death. Neuron. 2014; 84(6):1213-25.
PMC: 4632245.
DOI: 10.1016/j.neuron.2014.12.010.
View
13.
Irwin K, Jasin P, Braunstein K, Sinha I, Garret M, Bowden K
. A fluid biomarker reveals loss of TDP-43 splicing repression in presymptomatic ALS-FTD. Nat Med. 2024; 30(2):382-393.
PMC: 10878965.
DOI: 10.1038/s41591-023-02788-5.
View
14.
Chew J, Gendron T, Prudencio M, Sasaguri H, Zhang Y, Castanedes-Casey M
. Neurodegeneration. C9ORF72 repeat expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits. Science. 2015; 348(6239):1151-4.
PMC: 4692360.
DOI: 10.1126/science.aaa9344.
View
15.
Melamed Z, Lopez-Erauskin J, Baughn M, Zhang O, Drenner K, Sun Y
. Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent neurodegeneration. Nat Neurosci. 2019; 22(2):180-190.
PMC: 6348009.
DOI: 10.1038/s41593-018-0293-z.
View
16.
Boivin M, Pfister V, Gaucherot A, Ruffenach F, Negroni L, Sellier C
. Reduced autophagy upon C9ORF72 loss synergizes with dipeptide repeat protein toxicity in G4C2 repeat expansion disorders. EMBO J. 2020; 39(4):e100574.
PMC: 7024836.
DOI: 10.15252/embj.2018100574.
View
17.
Martier R, Liefhebber J, Miniarikova J, van der Zon T, Snapper J, Kolder I
. Artificial MicroRNAs Targeting C9orf72 Can Reduce Accumulation of Intra-nuclear Transcripts in ALS and FTD Patients. Mol Ther Nucleic Acids. 2019; 14:593-608.
PMC: 6378669.
DOI: 10.1016/j.omtn.2019.01.010.
View
18.
Xu D, Vincent A, Gonzalez-Gutierrez A, Aleyakpo B, Anoar S, Giblin A
. A monocarboxylate transporter rescues frontotemporal dementia and Alzheimer's disease models. PLoS Genet. 2023; 19(9):e1010893.
PMC: 10513295.
DOI: 10.1371/journal.pgen.1010893.
View
19.
Hughes M, Nelvagal H, Coombe-Tennant O, Smith D, Smith C, Massaro G
. A Novel Small Promoter Enhances AAV-Mediated Gene Therapy in Mouse Models of Niemann-Pick Type C1 Disease. Cells. 2023; 12(12).
PMC: 10296851.
DOI: 10.3390/cells12121619.
View
20.
van den Berg L, Rothstein J, Shaw P, Babu S, Benatar M, Bucelli R
. Safety, tolerability, and pharmacokinetics of antisense oligonucleotide BIIB078 in adults with C9orf72-associated amyotrophic lateral sclerosis: a phase 1, randomised, double blinded, placebo-controlled, multiple ascending dose study. Lancet Neurol. 2024; 23(9):901-912.
DOI: 10.1016/S1474-4422(24)00216-3.
View