» Articles » PMID: 24813611

Defective Mitophagy in XPA Via PARP-1 Hyperactivation and NAD(+)/SIRT1 Reduction

Overview
Journal Cell
Publisher Cell Press
Specialty Cell Biology
Date 2014 May 13
PMID 24813611
Citations 340
Authors
Affiliations
Soon will be listed here.
Abstract

Mitochondrial dysfunction is a common feature in neurodegeneration and aging. We identify mitochondrial dysfunction in xeroderma pigmentosum group A (XPA), a nucleotide excision DNA repair disorder with severe neurodegeneration, in silico and in vivo. XPA-deficient cells show defective mitophagy with excessive cleavage of PINK1 and increased mitochondrial membrane potential. The mitochondrial abnormalities appear to be caused by decreased activation of the NAD(+)-SIRT1-PGC-1α axis triggered by hyperactivation of the DNA damage sensor PARP-1. This phenotype is rescued by PARP-1 inhibition or by supplementation with NAD(+) precursors that also rescue the lifespan defect in xpa-1 nematodes. Importantly, this pathogenesis appears common to ataxia-telangiectasia and Cockayne syndrome, two other DNA repair disorders with neurodegeneration, but absent in XPC, a DNA repair disorder without neurodegeneration. Our findings reveal a nuclear-mitochondrial crosstalk that is critical for the maintenance of mitochondrial health.

Citing Articles

Nicotinamide mononucleotide combined with PJ-34 protects microglial cells from lipopolysaccharide-induced mitochondrial impairment through NMNAT3-PARP1 axis.

Li J, Cheng X, Ma R, Zou B, Zhang Y, Wu M J Transl Med. 2025; 23(1):279.

PMID: 40050860 PMC: 11884077. DOI: 10.1186/s12967-025-06280-1.


Metabolic Rewiring in the Face of Genomic Assault: Integrating DNA Damage Response and Cellular Metabolism.

Ma W, Zhou S Biomolecules. 2025; 15(2).

PMID: 40001471 PMC: 11852599. DOI: 10.3390/biom15020168.


Decoding the mechanisms behind second primary cancers.

Zeng M, Lin A, Jiang A, Qiu Z, Zhang H, Chen S J Transl Med. 2025; 23(1):115.

PMID: 39856672 PMC: 11762917. DOI: 10.1186/s12967-025-06151-9.


Nicotinamide adenine dinucleotide supplementation fails to enhance anesthetic recovery in rodents.

Goodnough C, Montoya J, Cartusciello E, Floranda E, Gross E Sci Rep. 2025; 15(1):1428.

PMID: 39789056 PMC: 11718248. DOI: 10.1038/s41598-024-83500-6.


Pathobiochemistry of Aging and Neurodegeneration: Deregulation of NAD+ Metabolism in Brain Cells.

Kolotyeva N, Groshkov A, Rozanova N, Berdnikov A, Novikova S, Komleva Y Biomolecules. 2025; 14(12.

PMID: 39766263 PMC: 11673498. DOI: 10.3390/biom14121556.


References
1.
DiGiovanna J, Kraemer K . Shining a light on xeroderma pigmentosum. J Invest Dermatol. 2012; 132(3 Pt 2):785-96. PMC: 3279615. DOI: 10.1038/jid.2011.426. View

2.
Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F . Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell. 2006; 127(6):1109-22. DOI: 10.1016/j.cell.2006.11.013. View

3.
Scheibye-Knudsen M, Scheibye-Alsing K, Canugovi C, Croteau D, Bohr V . A novel diagnostic tool reveals mitochondrial pathology in human diseases and aging. Aging (Albany NY). 2013; 5(3):192-208. PMC: 3629291. DOI: 10.18632/aging.100546. View

4.
Wang X, Winter D, Ashrafi G, Schlehe J, Liang Wong Y, Selkoe D . PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell. 2011; 147(4):893-906. PMC: 3261796. DOI: 10.1016/j.cell.2011.10.018. View

5.
Youle R, van der Bliek A . Mitochondrial fission, fusion, and stress. Science. 2012; 337(6098):1062-5. PMC: 4762028. DOI: 10.1126/science.1219855. View