» Articles » PMID: 22307624

Oncogene-specific Activation of Tyrosine Kinase Networks During Prostate Cancer Progression

Overview
Specialty Science
Date 2012 Feb 7
PMID 22307624
Citations 91
Authors
Affiliations
Soon will be listed here.
Abstract

Dominant mutations or DNA amplification of tyrosine kinases are rare among the oncogenic alterations implicated in prostate cancer. We demonstrate that castration-resistant prostate cancer (CRPC) in men exhibits increased tyrosine phosphorylation, raising the question of whether enhanced tyrosine kinase activity is observed in prostate cancer in the absence of specific tyrosine kinase mutation or DNA amplification. We generated a mouse model of prostate cancer progression using commonly perturbed non-tyrosine kinase oncogenes and pathways and detected a significant up-regulation of tyrosine phosphorylation at the carcinoma stage. Phosphotyrosine peptide enrichment and quantitative mass spectrometry identified oncogene-specific tyrosine kinase signatures, including activation of EGFR, ephrin type-A receptor 2 (EPHA2), and JAK2. Kinase:substrate relationship analysis of the phosphopeptides also revealed ABL1 and SRC tyrosine kinase activation. The observation of elevated tyrosine kinase signaling in advanced prostate cancer and identification of specific tyrosine kinase pathways from genetically defined tumor models point to unique therapeutic approaches using tyrosine kinase inhibitors for advanced prostate cancer.

Citing Articles

Impact of cell plasticity on prostate tumor heterogeneity and therapeutic response.

Archer M, Lin K, Kolanukuduru K, Zhang J, Ben-David R, Kotula L Am J Clin Exp Urol. 2025; 12(6):331-351.

PMID: 39839748 PMC: 11744350. DOI: 10.62347/YFRP8901.


Unveiling epithelial plasticity regulation in lung cancer: Exploring the cross-talk among Tks4 scaffold protein partners.

Laszlo L, Kurilla A, Tilajka A, Pancsa R, Takacs T, Novak J Mol Biol Cell. 2024; 35(8):ar111.

PMID: 38985526 PMC: 11321040. DOI: 10.1091/mbc.E24-03-0103.


In silico exploration of anti-prostate cancer compounds from differential expressed genes.

Ajiboye B, Fatoki T, Akinola O, Ajeigbe K, Bamisaye A, Dominguez-Martin E BMC Urol. 2024; 24(1):138.

PMID: 38956591 PMC: 11221101. DOI: 10.1186/s12894-024-01521-9.


Regulating Androgen Receptor Function in Prostate Cancer: Exploring the Diversity of Post-Translational Modifications.

Lumahan L, Arif M, Whitener A, Yi P Cells. 2024; 13(2).

PMID: 38275816 PMC: 10814774. DOI: 10.3390/cells13020191.


Pharmacological approaches to understanding protein kinase signaling networks.

Stephenson E, Higgins J Front Pharmacol. 2024; 14:1310135.

PMID: 38164473 PMC: 10757940. DOI: 10.3389/fphar.2023.1310135.


References
1.
Verweij J, Casali P, Zalcberg J, Lecesne A, Reichardt P, Blay J . Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial. Lancet. 2004; 364(9440):1127-34. DOI: 10.1016/S0140-6736(04)17098-0. View

2.
Kim K, Jeong J, Kim Y, Na K, Kim Y, Ahn S . Predictors of the response to gefitinib in refractory non-small cell lung cancer. Clin Cancer Res. 2005; 11(6):2244-51. DOI: 10.1158/1078-0432.CCR-04-2081. View

3.
Amanchy R, Periaswamy B, Mathivanan S, Reddy R, Tattikota S, Pandey A . A curated compendium of phosphorylation motifs. Nat Biotechnol. 2007; 25(3):285-6. DOI: 10.1038/nbt0307-285. View

4.
Macrae M, Neve R, Rodriguez-Viciana P, Haqq C, Yeh J, Chen C . A conditional feedback loop regulates Ras activity through EphA2. Cancer Cell. 2005; 8(2):111-8. DOI: 10.1016/j.ccr.2005.07.005. View

5.
Subramanian A, Tamayo P, Mootha V, Mukherjee S, Ebert B, Gillette M . Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005; 102(43):15545-50. PMC: 1239896. DOI: 10.1073/pnas.0506580102. View