» Articles » PMID: 20579941

Integrative Genomic Profiling of Human Prostate Cancer

Abstract

Annotation of prostate cancer genomes provides a foundation for discoveries that can impact disease understanding and treatment. Concordant assessment of DNA copy number, mRNA expression, and focused exon resequencing in 218 prostate cancer tumors identified the nuclear receptor coactivator NCOA2 as an oncogene in approximately 11% of tumors. Additionally, the androgen-driven TMPRSS2-ERG fusion was associated with a previously unrecognized, prostate-specific deletion at chromosome 3p14 that implicates FOXP1, RYBP, and SHQ1 as potential cooperative tumor suppressors. DNA copy-number data from primary tumors revealed that copy-number alterations robustly define clusters of low- and high-risk disease beyond that achieved by Gleason score. The genomic and clinical outcome data from these patients are now made available as a public resource.

Citing Articles

EphB4-ephrin-B2 are targets in castration resistant prostate cancer.

Li G, Ma B, Zhang S, Liu R, Siddiqi I, Sali A Br J Cancer. 2025; .

PMID: 40044981 DOI: 10.1038/s41416-025-02942-5.


Unveiling Racial Disparities in Localized Prostate Cancer: A Systems-Level Exploration of the lncRNA Landscape.

Morgan R, Hazard E, Savage S, Halbert C, Gattoni-Celli S, Hardiman G Genes (Basel). 2025; 16(2).

PMID: 40004558 PMC: 11855151. DOI: 10.3390/genes16020229.


The Landscape of Prostate Tumour Methylation.

Arbet J, Yamaguchi T, Shiah Y, Hugh-White R, Wiggins A, Oh J bioRxiv. 2025; .

PMID: 39990314 PMC: 11844408. DOI: 10.1101/2025.02.07.637178.


A Novel Molecular Profile of Hormone-Sensitive Prostate Cancer Defines High Risk Patients.

Piombino C, Nasso C, Bettelli S, Manfredini S, Vitale M, Pipitone S Cancer Med. 2025; 14(4):e70472.

PMID: 39980141 PMC: 11842281. DOI: 10.1002/cam4.70472.


Uncoupling of Akt and mTOR signaling drives resistance to Akt inhibition in PTEN loss prostate cancers.

Mao N, Lee Y, Salsabeel N, Zhang Z, Li D, Kaur H Sci Adv. 2025; 11(6):eadq3802.

PMID: 39919177 PMC: 11804928. DOI: 10.1126/sciadv.adq3802.


References
1.
Singh D, Febbo P, Ross K, Jackson D, Manola J, Ladd C . Gene expression correlates of clinical prostate cancer behavior. Cancer Cell. 2002; 1(2):203-9. DOI: 10.1016/s1535-6108(02)00030-2. View

2.
Wang Y, Moorhead M, Karlin-Neumann G, Falkowski M, Chen C, Siddiqui F . Allele quantification using molecular inversion probes (MIP). Nucleic Acids Res. 2005; 33(21):e183. PMC: 1301601. DOI: 10.1093/nar/gni177. View

3.
Pleasance E, Stephens P, OMeara S, McBride D, Meynert A, Jones D . A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature. 2009; 463(7278):184-90. PMC: 2880489. DOI: 10.1038/nature08629. View

4.
Hieronymus H, Lamb J, Ross K, Peng X, Clement C, Rodina A . Gene expression signature-based chemical genomic prediction identifies a novel class of HSP90 pathway modulators. Cancer Cell. 2006; 10(4):321-30. DOI: 10.1016/j.ccr.2006.09.005. View

5.
Kim J, Dhanasekaran S, Mehra R, Tomlins S, Gu W, Yu J . Integrative analysis of genomic aberrations associated with prostate cancer progression. Cancer Res. 2007; 67(17):8229-39. DOI: 10.1158/0008-5472.CAN-07-1297. View