» Articles » PMID: 22158538

Recurrent Mutations in the U2AF1 Splicing Factor in Myelodysplastic Syndromes

Abstract

Myelodysplastic syndromes (MDS) are hematopoietic stem cell disorders that often progress to chemotherapy-resistant secondary acute myeloid leukemia (sAML). We used whole-genome sequencing to perform an unbiased comprehensive screen to discover the somatic mutations in a sample from an individual with sAML and genotyped the loci containing these mutations in the matched MDS sample. Here we show that a missense mutation affecting the serine at codon 34 (Ser34) in U2AF1 was recurrently present in 13 out of 150 (8.7%) subjects with de novo MDS, and we found suggestive evidence of an increased risk of progression to sAML associated with this mutation. U2AF1 is a U2 auxiliary factor protein that recognizes the AG splice acceptor dinucleotide at the 3' end of introns, and the alterations in U2AF1 are located in highly conserved zinc fingers of this protein. Mutant U2AF1 promotes enhanced splicing and exon skipping in reporter assays in vitro. This previously unidentified, recurrent mutation in U2AF1 implicates altered pre-mRNA splicing as a potential mechanism for MDS pathogenesis.

Citing Articles

Alternative splicing of modulatory immune receptors in T lymphocytes: a newly identified and targetable mechanism for anticancer immunotherapy.

Tzaban S, Stern O, Zisman E, Eisenberg G, Klein S, Frankenburg S Front Immunol. 2025; 15():1490035.

PMID: 39845971 PMC: 11752881. DOI: 10.3389/fimmu.2024.1490035.


SF3B1: from core splicing factor to oncogenic driver.

Bak-Gordon P, Manley J RNA. 2025; 31(3):314-332.

PMID: 39773890 PMC: 11874996. DOI: 10.1261/rna.080368.124.


Challenges in Therapeutically Targeting the RNA-Recognition Motif.

Schmeing S, t Hart P Wiley Interdiscip Rev RNA. 2024; 15(6):e1877.

PMID: 39668490 PMC: 11638515. DOI: 10.1002/wrna.1877.


Alternative Splicing: A Potential Therapeutic Target in Hematological Malignancies.

Temaj G, Chichiarelli S, Saha S, Telkoparan-Akillilar P, Nuhii N, Hadziselimovic R Hematol Rep. 2024; 16(4):682-697.

PMID: 39584923 PMC: 11587037. DOI: 10.3390/hematolrep16040066.


Genome sequencing in the management of myelodysplastic syndromes and related disorders.

Cazzola M, Malcovati L Haematologica. 2024; 110(2):312-329.

PMID: 39445412 PMC: 11788631. DOI: 10.3324/haematol.2023.284947.


References
1.
Li H, Durbin R . Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009; 25(14):1754-60. PMC: 2705234. DOI: 10.1093/bioinformatics/btp324. View

2.
Chen K, Wallis J, McLellan M, Larson D, Kalicki J, Pohl C . BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat Methods. 2009; 6(9):677-81. PMC: 3661775. DOI: 10.1038/nmeth.1363. View

3.
Ng P, Henikoff S . SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003; 31(13):3812-4. PMC: 168916. DOI: 10.1093/nar/gkg509. View

4.
Visconte V, Makishima H, Jankowska A, Szpurka H, Traina F, Jerez A . SF3B1, a splicing factor is frequently mutated in refractory anemia with ring sideroblasts. Leukemia. 2011; 26(3):542-5. DOI: 10.1038/leu.2011.232. View

5.
Pacheco T, Moita L, Gomes A, Hacohen N, Carmo-Fonseca M . RNA interference knockdown of hU2AF35 impairs cell cycle progression and modulates alternative splicing of Cdc25 transcripts. Mol Biol Cell. 2006; 17(10):4187-99. PMC: 1635340. DOI: 10.1091/mbc.e06-01-0036. View