6.
Graveley B, Maniatis T
. Arginine/serine-rich domains of SR proteins can function as activators of pre-mRNA splicing. Mol Cell. 1998; 1(5):765-71.
DOI: 10.1016/s1097-2765(00)80076-3.
View
7.
Liang Y, Tebaldi T, Rejeski K, Joshi P, Stefani G, Taylor A
. SRSF2 mutations drive oncogenesis by activating a global program of aberrant alternative splicing in hematopoietic cells. Leukemia. 2018; 32(12):2659-2671.
PMC: 6274620.
DOI: 10.1038/s41375-018-0152-7.
View
8.
Van Nostrand E, Freese P, Pratt G, Wang X, Wei X, Xiao R
. A large-scale binding and functional map of human RNA-binding proteins. Nature. 2020; 583(7818):711-719.
PMC: 7410833.
DOI: 10.1038/s41586-020-2077-3.
View
9.
Patnaik M, Lasho T, Finke C, Hanson C, Hodnefield J, Knudson R
. Spliceosome mutations involving SRSF2, SF3B1, and U2AF35 in chronic myelomonocytic leukemia: prevalence, clinical correlates, and prognostic relevance. Am J Hematol. 2013; 88(3):201-6.
DOI: 10.1002/ajh.23373.
View
10.
Genovese G, Kahler A, Handsaker R, Lindberg J, Rose S, Bakhoum S
. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014; 371(26):2477-87.
PMC: 4290021.
DOI: 10.1056/NEJMoa1409405.
View
11.
Kitamura K, Nimura K
. Regulation of RNA Splicing: Aberrant Splicing Regulation and Therapeutic Targets in Cancer. Cells. 2021; 10(4).
PMC: 8073995.
DOI: 10.3390/cells10040923.
View
12.
Lasho T, Jimma T, Finke C, Patnaik M, Hanson C, Ketterling R
. SRSF2 mutations in primary myelofibrosis: significant clustering with IDH mutations and independent association with inferior overall and leukemia-free survival. Blood. 2012; 120(20):4168-71.
DOI: 10.1182/blood-2012-05-429696.
View
13.
Zhang Q, Ai Y, Abdel-Wahab O
. Molecular impact of mutations in RNA splicing factors in cancer. Mol Cell. 2024; 84(19):3667-3680.
PMC: 11455611.
DOI: 10.1016/j.molcel.2024.07.019.
View
14.
Masaki S, Ikeda S, Hata A, Shiozawa Y, Kon A, Ogawa S
. Myelodysplastic Syndrome-Associated SRSF2 Mutations Cause Splicing Changes by Altering Binding Motif Sequences. Front Genet. 2019; 10:338.
PMC: 6476956.
DOI: 10.3389/fgene.2019.00338.
View
15.
Cilloni D, Itri F, Bonuomo V, Petiti J
. Mutations in Hematological Malignancies. Cancers (Basel). 2022; 14(19).
PMC: 9563056.
DOI: 10.3390/cancers14194927.
View
16.
Ren P, Lu L, Cai S, Chen J, Lin W, Han F
. Alternative Splicing: A New Cause and Potential Therapeutic Target in Autoimmune Disease. Front Immunol. 2021; 12:713540.
PMC: 8416054.
DOI: 10.3389/fimmu.2021.713540.
View
17.
Wang L, Lawrence M, Wan Y, Stojanov P, Sougnez C, Stevenson K
. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med. 2011; 365(26):2497-506.
PMC: 3685413.
DOI: 10.1056/NEJMoa1109016.
View
18.
Zhao Y, Cai W, Hua Y, Yang X, Zhou J
. The Biological and Clinical Consequences of RNA Splicing Factor U2AF1 Mutation in Myeloid Malignancies. Cancers (Basel). 2022; 14(18).
PMC: 9496927.
DOI: 10.3390/cancers14184406.
View
19.
Damm F, Kosmider O, Gelsi-Boyer V, Renneville A, Carbuccia N, Hidalgo-Curtis C
. Mutations affecting mRNA splicing define distinct clinical phenotypes and correlate with patient outcome in myelodysplastic syndromes. Blood. 2012; 119(14):3211-8.
DOI: 10.1182/blood-2011-12-400994.
View
20.
Kim E, Ilagan J, Liang Y, Daubner G, Lee S, Ramakrishnan A
. SRSF2 Mutations Contribute to Myelodysplasia by Mutant-Specific Effects on Exon Recognition. Cancer Cell. 2015; 27(5):617-30.
PMC: 4429920.
DOI: 10.1016/j.ccell.2015.04.006.
View