6.
Nam A, Kim K, Chaligne R, Izzo F, Ang C, Taylor J
. Somatic mutations and cell identity linked by Genotyping of Transcriptomes. Nature. 2019; 571(7765):355-360.
PMC: 6782071.
DOI: 10.1038/s41586-019-1367-0.
View
7.
Graveley B, Maniatis T
. Arginine/serine-rich domains of SR proteins can function as activators of pre-mRNA splicing. Mol Cell. 1998; 1(5):765-71.
DOI: 10.1016/s1097-2765(00)80076-3.
View
8.
Liang Y, Tebaldi T, Rejeski K, Joshi P, Stefani G, Taylor A
. SRSF2 mutations drive oncogenesis by activating a global program of aberrant alternative splicing in hematopoietic cells. Leukemia. 2018; 32(12):2659-2671.
PMC: 6274620.
DOI: 10.1038/s41375-018-0152-7.
View
9.
Patnaik M, Lasho T, Finke C, Hanson C, Hodnefield J, Knudson R
. Spliceosome mutations involving SRSF2, SF3B1, and U2AF35 in chronic myelomonocytic leukemia: prevalence, clinical correlates, and prognostic relevance. Am J Hematol. 2013; 88(3):201-6.
DOI: 10.1002/ajh.23373.
View
10.
Hao T, Li-Talley M, Buck A, Chen W
. An emerging trend of rapid increase of leukemia but not all cancers in the aging population in the United States. Sci Rep. 2019; 9(1):12070.
PMC: 6700310.
DOI: 10.1038/s41598-019-48445-1.
View
11.
Adams D, Altucci L, Antonarakis S, Ballesteros J, Beck S, Bird A
. BLUEPRINT to decode the epigenetic signature written in blood. Nat Biotechnol. 2012; 30(3):224-6.
DOI: 10.1038/nbt.2153.
View
12.
Stamm S, Ben-Ari S, Rafalska I, Tang Y, Zhang Z, Toiber D
. Function of alternative splicing. Gene. 2005; 344:1-20.
DOI: 10.1016/j.gene.2004.10.022.
View
13.
Picelli S, Faridani O, Bjorklund A, Winberg G, Sagasser S, Sandberg R
. Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc. 2014; 9(1):171-81.
DOI: 10.1038/nprot.2014.006.
View
14.
Perriman R, Ares Jr M
. Rearrangement of competing U2 RNA helices within the spliceosome promotes multiple steps in splicing. Genes Dev. 2007; 21(7):811-20.
PMC: 1838532.
DOI: 10.1101/gad.1524307.
View
15.
Dumont N, Wang Y, Rudnicki M
. Intrinsic and extrinsic mechanisms regulating satellite cell function. Development. 2015; 142(9):1572-81.
PMC: 4419274.
DOI: 10.1242/dev.114223.
View
16.
Chen L, Chen J, Huang Y, Gu Y, Qiu J, Qian H
. The Augmented R-Loop Is a Unifying Mechanism for Myelodysplastic Syndromes Induced by High-Risk Splicing Factor Mutations. Mol Cell. 2018; 69(3):412-425.e6.
PMC: 5957072.
DOI: 10.1016/j.molcel.2017.12.029.
View
17.
Pellin D, Loperfido M, Baricordi C, Wolock S, Montepeloso A, Weinberg O
. A comprehensive single cell transcriptional landscape of human hematopoietic progenitors. Nat Commun. 2019; 10(1):2395.
PMC: 6546699.
DOI: 10.1038/s41467-019-10291-0.
View
18.
Macosko E, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M
. Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell. 2015; 161(5):1202-1214.
PMC: 4481139.
DOI: 10.1016/j.cell.2015.05.002.
View
19.
Cazzola M, Rossi M, Malcovati L
. Biologic and clinical significance of somatic mutations of SF3B1 in myeloid and lymphoid neoplasms. Blood. 2012; 121(2):260-9.
PMC: 3790951.
DOI: 10.1182/blood-2012-09-399725.
View
20.
Cilloni D, Itri F, Bonuomo V, Petiti J
. Mutations in Hematological Malignancies. Cancers (Basel). 2022; 14(19).
PMC: 9563056.
DOI: 10.3390/cancers14194927.
View