6.
Li J, Abel R, Zhu K, Cao Y, Zhao S, Friesner R
. The VSGB 2.0 model: a next generation energy model for high resolution protein structure modeling. Proteins. 2011; 79(10):2794-812.
PMC: 3206729.
DOI: 10.1002/prot.23106.
View
7.
Dixon S, Smondyrev A, Knoll E, Rao S, Shaw D, Friesner R
. PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J Comput Aided Mol Des. 2006; 20(10-11):647-71.
DOI: 10.1007/s10822-006-9087-6.
View
8.
Trott O, Olson A
. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2009; 31(2):455-61.
PMC: 3041641.
DOI: 10.1002/jcc.21334.
View
9.
Goodford P
. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem. 1985; 28(7):849-57.
DOI: 10.1021/jm00145a002.
View
10.
Song R, Wang Z, Schapira M
. Disease Association and Druggability of WD40 Repeat Proteins. J Proteome Res. 2017; 16(10):3766-3773.
DOI: 10.1021/acs.jproteome.7b00451.
View
11.
Ton A, Gentile F, Hsing M, Ban F, Cherkasov A
. Rapid Identification of Potential Inhibitors of SARS-CoV-2 Main Protease by Deep Docking of 1.3 Billion Compounds. Mol Inform. 2020; 39(8):e2000028.
PMC: 7228259.
DOI: 10.1002/minf.202000028.
View
12.
Puhl A, Bogart J, Haberman V, Larson J, Godoy A, Norris-Drouin J
. Discovery and Characterization of Peptide Inhibitors for Calcium and Integrin Binding Protein 1. ACS Chem Biol. 2020; 15(6):1505-1516.
PMC: 7305997.
DOI: 10.1021/acschembio.0c00144.
View
13.
Cang Z, Wei G
. TopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions. PLoS Comput Biol. 2017; 13(7):e1005690.
PMC: 5549771.
DOI: 10.1371/journal.pcbi.1005690.
View
14.
Rong S, Xu G, Liu B, Sun Y, Snetselaar L, Wallace R
. Trends in Mortality From Parkinson Disease in the United States, 1999-2019. Neurology. 2021; 97(20):e1986-e1993.
DOI: 10.1212/WNL.0000000000012826.
View
15.
Aleandri S, Vaccaro A, Armenta R, Volker A, Kuentz M
. Dynamic Light Scattering of Biopharmaceutics-Can Analytical Performance Be Enhanced by Laser Power?. Pharmaceutics. 2018; 10(3).
PMC: 6161136.
DOI: 10.3390/pharmaceutics10030094.
View
16.
Allen S, Dower C, Liu A, Lumb K
. Detection of Small-Molecule Aggregation with High-Throughput Microplate Biophysical Methods. Curr Protoc Chem Biol. 2020; 12(1):e78.
DOI: 10.1002/cpch.78.
View
17.
Stepniewska-Dziubinska M, Zielenkiewicz P, Siedlecki P
. Development and evaluation of a deep learning model for protein-ligand binding affinity prediction. Bioinformatics. 2018; 34(21):3666-3674.
PMC: 6198856.
DOI: 10.1093/bioinformatics/bty374.
View
18.
Taymans J, Fell M, Greenamyre T, Hirst W, Mamais A, Padmanabhan S
. Perspective on the current state of the LRRK2 field. NPJ Parkinsons Dis. 2023; 9(1):104.
PMC: 10314919.
DOI: 10.1038/s41531-023-00544-7.
View
19.
Zhang P, Fan Y, Ru H, Wang L, Magupalli V, Taylor S
. Crystal structure of the WD40 domain dimer of LRRK2. Proc Natl Acad Sci U S A. 2019; 116(5):1579-1584.
PMC: 6358694.
DOI: 10.1073/pnas.1817889116.
View
20.
Jorgensen N, Peng Y, Ho C, Rideout H, Petrey D, Liu P
. The WD40 domain is required for LRRK2 neurotoxicity. PLoS One. 2009; 4(12):e8463.
PMC: 2794542.
DOI: 10.1371/journal.pone.0008463.
View