» Articles » PMID: 39256584

Custom Microfluidic Chip Design Enables Cost-effective Three-dimensional Spatiotemporal Transcriptomics with a Wide Field of View

Overview
Journal Nat Genet
Specialty Genetics
Date 2024 Sep 10
PMID 39256584
Authors
Affiliations
Soon will be listed here.
Abstract

Spatial transcriptomic techniques offer unprecedented insights into the molecular organization of complex tissues. However, integrating cost-effectiveness, high throughput, a wide field of view and compatibility with three-dimensional (3D) volumes has been challenging. Here we introduce microfluidics-assisted grid chips for spatial transcriptome sequencing (MAGIC-seq), a new method that combines carbodiimide chemistry, spatial combinatorial indexing and innovative microfluidics design. This technique allows sensitive and reproducible profiling of diverse tissue types, achieving an eightfold increase in throughput, minimal cost and reduced batch effects. MAGIC-seq breaks conventional microfluidics limits by enhancing barcoding efficiency and enables analysis of whole postnatal mouse sections, providing comprehensive cellular structure elucidation at near single-cell resolution, uncovering transcriptional variations and dynamic trajectories of mouse organogenesis. Our 3D transcriptomic atlas of the developing mouse brain, consisting of 93 sections, reveals the molecular and cellular landscape, serving as a valuable resource for neuroscience and developmental biology. Overall, MAGIC-seq is a high-throughput, cost-effective, large field of view and versatile method for spatial transcriptomic studies.

Citing Articles

From morphology to single-cell molecules: high-resolution 3D histology in biomedicine.

Xu X, Su J, Zhu R, Li K, Zhao X, Fan J Mol Cancer. 2025; 24(1):63.

PMID: 40033282 PMC: 11874780. DOI: 10.1186/s12943-025-02240-x.


Unlocking the potential of spatial transcriptomics with custom microfluidic chips.

Wu B, Gao Y Sci China Life Sci. 2025; .

PMID: 39826037 DOI: 10.1007/s11427-024-2771-9.


Spatial transcriptomics in breast cancer: providing insight into tumor heterogeneity and promoting individualized therapy.

An J, Lu Y, Chen Y, Chen Y, Zhou Z, Chen J Front Immunol. 2025; 15:1499301.

PMID: 39749323 PMC: 11693744. DOI: 10.3389/fimmu.2024.1499301.


Decoding Spatial Complexity of Diverse RNA Species in Archival Tissues.

Zhu J, Zhao F Genomics Proteomics Bioinformatics. 2024; 22(6).

PMID: 39693115 PMC: 11784585. DOI: 10.1093/gpbjnl/qzae089.


Custom microfluidic chip design enables cost-effective three-dimensional spatiotemporal transcriptomics with a wide field of view.

Zhu J, Pang K, Hu B, He R, Wang N, Jiang Z Nat Genet. 2024; 56(10):2259-2270.

PMID: 39256584 PMC: 11525186. DOI: 10.1038/s41588-024-01906-4.

References
1.
Islam A, Kagawa Y, Sharifi K, Ebrahimi M, Miyazaki H, Yasumoto Y . Fatty Acid Binding Protein 3 Is Involved in n-3 and n-6 PUFA transport in mouse trophoblasts. J Nutr. 2014; 144(10):1509-16. DOI: 10.3945/jn.114.197202. View

2.
Rodriques S, Stickels R, Goeva A, Martin C, Murray E, Vanderburg C . Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science. 2019; 363(6434):1463-1467. PMC: 6927209. DOI: 10.1126/science.aaw1219. View

3.
Bergen V, Lange M, Peidli S, Wolf F, Theis F . Generalizing RNA velocity to transient cell states through dynamical modeling. Nat Biotechnol. 2020; 38(12):1408-1414. DOI: 10.1038/s41587-020-0591-3. View

4.
Zhang M, Eichhorn S, Zingg B, Yao Z, Cotter K, Zeng H . Spatially resolved cell atlas of the mouse primary motor cortex by MERFISH. Nature. 2021; 598(7879):137-143. PMC: 8494645. DOI: 10.1038/s41586-021-03705-x. View

5.
Kumar A, Tian L, Bolondi A, Hernandez A, Stickels R, Kretzmer H . Spatiotemporal transcriptomic maps of whole mouse embryos at the onset of organogenesis. Nat Genet. 2023; 55(7):1176-1185. PMC: 10335937. DOI: 10.1038/s41588-023-01435-6. View