» Articles » PMID: 33188776

High-Spatial-Resolution Multi-Omics Sequencing Via Deterministic Barcoding in Tissue

Overview
Journal Cell
Publisher Cell Press
Specialty Cell Biology
Date 2020 Nov 14
PMID 33188776
Citations 329
Authors
Affiliations
Soon will be listed here.
Abstract

We present deterministic barcoding in tissue for spatial omics sequencing (DBiT-seq) for co-mapping of mRNAs and proteins in a formaldehyde-fixed tissue slide via next-generation sequencing (NGS). Parallel microfluidic channels were used to deliver DNA barcodes to the surface of a tissue slide, and crossflow of two sets of barcodes, A1-50 and B1-50, followed by ligation in situ, yielded a 2D mosaic of tissue pixels, each containing a unique full barcode AB. Application to mouse embryos revealed major tissue types in early organogenesis as well as fine features like microvasculature in a brain and pigmented epithelium in an eye field. Gene expression profiles in 10-μm pixels conformed into the clusters of single-cell transcriptomes, allowing for rapid identification of cell types and spatial distributions. DBiT-seq can be adopted by researchers with no experience in microfluidics and may find applications in a range of fields including developmental biology, cancer biology, neuroscience, and clinical pathology.

Citing Articles

Spotiphy enables single-cell spatial whole transcriptomics across an entire section.

Yang J, Zheng Z, Jiao Y, Yu K, Bhatara S, Yang X Nat Methods. 2025; .

PMID: 40074951 DOI: 10.1038/s41592-025-02622-5.


Quantifying and interpreting biologically meaningful spatial signatures within tumor microenvironments.

Jing S, Wang H, Lin P, Yuan J, Tang Z, Li H NPJ Precis Oncol. 2025; 9(1):68.

PMID: 40069556 PMC: 11897387. DOI: 10.1038/s41698-025-00857-1.


Scaling up spatial transcriptomics for large-sized tissues: uncovering cellular-level tissue architecture beyond conventional platforms with iSCALE.

Schroeder A, Loth M, Luo C, Yao S, Yan H, Zhang D bioRxiv. 2025; .

PMID: 40060412 PMC: 11888418. DOI: 10.1101/2025.02.25.640190.


From morphology to single-cell molecules: high-resolution 3D histology in biomedicine.

Xu X, Su J, Zhu R, Li K, Zhao X, Fan J Mol Cancer. 2025; 24(1):63.

PMID: 40033282 PMC: 11874780. DOI: 10.1186/s12943-025-02240-x.


Advancements in single-cell RNA sequencing and spatial transcriptomics: transforming biomedical research.

Molla Desta G, Birhanu A Acta Biochim Pol. 2025; 72:13922.

PMID: 39980637 PMC: 11835515. DOI: 10.3389/abp.2025.13922.


References
1.
Yun S, Saijoh Y, Hirokawa K, Kopinke D, Murtaugh L, Monuki E . Lhx2 links the intrinsic and extrinsic factors that control optic cup formation. Development. 2009; 136(23):3895-906. PMC: 2778739. DOI: 10.1242/dev.041202. View

2.
Aran D, Looney A, Liu L, Wu E, Fong V, Hsu A . Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol. 2019; 20(2):163-172. PMC: 6340744. DOI: 10.1038/s41590-018-0276-y. View

3.
Lubeck E, Coskun A, Zhiyentayev T, Ahmad M, Cai L . Single-cell in situ RNA profiling by sequential hybridization. Nat Methods. 2014; 11(4):360-1. PMC: 4085791. DOI: 10.1038/nmeth.2892. View

4.
Wang X, Allen W, Wright M, Sylwestrak E, Samusik N, Vesuna S . Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science. 2018; 361(6400). PMC: 6339868. DOI: 10.1126/science.aat5691. View

5.
Heavner W, Pevny L . Eye development and retinogenesis. Cold Spring Harb Perspect Biol. 2012; 4(12). PMC: 3504437. DOI: 10.1101/cshperspect.a008391. View