» Articles » PMID: 38355974

Validation of Biomarkers of Aging

Abstract

The search for biomarkers that quantify biological aging (particularly 'omic'-based biomarkers) has intensified in recent years. Such biomarkers could predict aging-related outcomes and could serve as surrogate endpoints for the evaluation of interventions promoting healthy aging and longevity. However, no consensus exists on how biomarkers of aging should be validated before their translation to the clinic. Here, we review current efforts to evaluate the predictive validity of omic biomarkers of aging in population studies, discuss challenges in comparability and generalizability and provide recommendations to facilitate future validation of biomarkers of aging. Finally, we discuss how systematic validation can accelerate clinical translation of biomarkers of aging and their use in gerotherapeutic clinical trials.

Citing Articles

Compositional analysis of lymphocytes and their relationship with health outcomes: findings from the health and retirement study.

Xu L, Li C, Aiello A, Langa K, Dowd J, Stebbins R Immun Ageing. 2025; 22(1):12.

PMID: 40075474 PMC: 11899731. DOI: 10.1186/s12979-025-00505-z.


Disruption and adaptation: infant gut microbiota's dynamic response to SARS-CoV-2 infection.

Zhu L, Zhao L, Zhu Y, Xu X, Lin J, Duan Y Microbiome. 2025; 13(1):72.

PMID: 40069800 PMC: 11895207. DOI: 10.1186/s40168-025-02029-6.


Association between accelerated biological aging and colorectal cancer: a cross-sectional study.

Wang S, Wang K, Wang X Front Med (Lausanne). 2025; 12:1533507.

PMID: 40061382 PMC: 11885229. DOI: 10.3389/fmed.2025.1533507.


Biomarkers of aging: functional aspects still trump molecular parameters.

Furrer R, Handschin C NPJ Aging. 2025; 11(1):15.

PMID: 40032923 PMC: 11876623. DOI: 10.1038/s41514-025-00207-2.


Comprehensive Bioinformatics Analysis of Glycosylation-Related Genes and Potential Therapeutic Targets in Colorectal Cancer.

Chuang P, Chang K, Chang C, Chen T, Wu Y, Lin H Int J Mol Sci. 2025; 26(4).

PMID: 40004112 PMC: 11855181. DOI: 10.3390/ijms26041648.


References
1.
Yu B, Zanetti K, Temprosa M, Albanes D, Appel N, Barrera C . The Consortium of Metabolomics Studies (COMETS): Metabolomics in 47 Prospective Cohort Studies. Am J Epidemiol. 2019; 188(6):991-1012. PMC: 6545286. DOI: 10.1093/aje/kwz028. View

2.
Fortier I, Raina P, van den Heuvel E, Griffith L, Craig C, Saliba M . Maelstrom Research guidelines for rigorous retrospective data harmonization. Int J Epidemiol. 2016; 46(1):103-105. PMC: 5407152. DOI: 10.1093/ije/dyw075. View

3.
Fang F, Zhou L, Perng W, Marsit C, Knight A, Cardenas A . Evaluation of pediatric epigenetic clocks across multiple tissues. Clin Epigenetics. 2023; 15(1):142. PMC: 10475199. DOI: 10.1186/s13148-023-01552-3. View

4.
Bizzarri D, Reinders M, Beekman M, Slagboom P, van den Akker E . MiMIR: R-shiny application to infer risk factors and endpoints from Nightingale Health's 1H-NMR metabolomics data. Bioinformatics. 2022; 38(15):3847-3849. PMC: 9344846. DOI: 10.1093/bioinformatics/btac388. View

5.
Taliun D, Harris D, Kessler M, Carlson J, Szpiech Z, Torres R . Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature. 2021; 590(7845):290-299. PMC: 7875770. DOI: 10.1038/s41586-021-03205-y. View