» Articles » PMID: 38233380

Conserved Chromatin and Repetitive Patterns Reveal Slow Genome Evolution in Frogs

Abstract

Frogs are an ecologically diverse and phylogenetically ancient group of anuran amphibians that include important vertebrate cell and developmental model systems, notably the genus Xenopus. Here we report a high-quality reference genome sequence for the western clawed frog, Xenopus tropicalis, along with draft chromosome-scale sequences of three distantly related emerging model frog species, Eleutherodactylus coqui, Engystomops pustulosus, and Hymenochirus boettgeri. Frog chromosomes have remained remarkably stable since the Mesozoic Era, with limited Robertsonian (i.e., arm-preserving) translocations and end-to-end fusions found among the smaller chromosomes. Conservation of synteny includes conservation of centromere locations, marked by centromeric tandem repeats associated with Cenp-a binding surrounded by pericentromeric LINE/L1 elements. This work explores the structure of chromosomes across frogs, using a dense meiotic linkage map for X. tropicalis and chromatin conformation capture (Hi-C) data for all species. Abundant satellite repeats occupy the unusually long (~20 megabase) terminal regions of each chromosome that coincide with high rates of recombination. Both embryonic and differentiated cells show reproducible associations of centromeric chromatin and of telomeres, reflecting a Rabl-like configuration. Our comparative analyses reveal 13 conserved ancestral anuran chromosomes from which contemporary frog genomes were constructed.

Citing Articles

FISH mapping in Xenopus pygmaeus refines understanding of genomic rearrangements and reveals jumping NORs in African clawed frogs.

Bergelova B, Gvozdik V, Knytl M Heredity (Edinb). 2025; .

PMID: 40025138 DOI: 10.1038/s41437-025-00749-x.


Rapid Sex Chromosome Turnover in African Clawed Frogs (Xenopus) and the Origins of New Sex Chromosomes.

Evans B, Gvozdik V, Knytl M, Cauret C, Herrel A, Greenbaum E Mol Biol Evol. 2024; 41(12).

PMID: 39665151 PMC: 11635168. DOI: 10.1093/molbev/msae234.


Repeat-Rich Regions Cause False-Positive Detection of NUMTs: A Case Study in Amphibians Using an Improved Cane Toad Reference Genome.

Cheung K, Rollins L, Hammond J, Barton K, Ferguson J, Eyck H Genome Biol Evol. 2024; 16(11).

PMID: 39548850 PMC: 11606642. DOI: 10.1093/gbe/evae246.


The Amphibian Genomics Consortium: advancing genomic and genetic resources for amphibian research and conservation.

Kosch T, Torres-Sanchez M, Liedtke H, Summers K, Yun M, Crawford A BMC Genomics. 2024; 25(1):1025.

PMID: 39487448 PMC: 11529218. DOI: 10.1186/s12864-024-10899-7.


Comparative analysis of amphibian genomes: An emerging resource for basic and applied research.

Kosch T, Crawford A, Lockridge Mueller R, Wollenberg Valero K, Power M, Rodriguez A Mol Ecol Resour. 2024; 25(1):e14025.

PMID: 39364691 PMC: 11646304. DOI: 10.1111/1755-0998.14025.


References
1.
Funabiki H, Hagan I, Uzawa S, Yanagida M . Cell cycle-dependent specific positioning and clustering of centromeres and telomeres in fission yeast. J Cell Biol. 1993; 121(5):961-76. PMC: 2119680. DOI: 10.1083/jcb.121.5.961. View

2.
Del Pino E, Venegas-Ferrin M, Romero-Carvajal A, Montenegro-Larrea P, Saenz-Ponce N, Moya I . A comparative analysis of frog early development. Proc Natl Acad Sci U S A. 2007; 104(29):11882-8. PMC: 1924569. DOI: 10.1073/pnas.0705092104. View

3.
Hoencamp C, Dudchenko O, Elbatsh A, Brahmachari S, Raaijmakers J, van Schaik T . 3D genomics across the tree of life reveals condensin II as a determinant of architecture type. Science. 2021; 372(6545):984-989. PMC: 8172041. DOI: 10.1126/science.abe2218. View

4.
Temple G, Gerhard D, Rasooly R, Feingold E, Good P, Robinson C . The completion of the Mammalian Gene Collection (MGC). Genome Res. 2009; 19(12):2324-33. PMC: 2792178. DOI: 10.1101/gr.095976.109. View

5.
Maruyama T, Imai H . Evolutionary rate of the mammalian karyotype. J Theor Biol. 1981; 90(1):111-21. DOI: 10.1016/0022-5193(81)90125-9. View