» Articles » PMID: 37980361

Biofilm Heterogeneity-adaptive Photoredox Catalysis Enables Red Light-triggered Nitric Oxide Release for Combating Drug-resistant Infections

Overview
Journal Nat Commun
Specialty Biology
Date 2023 Nov 18
PMID 37980361
Authors
Affiliations
Soon will be listed here.
Abstract

The formation of biofilms is closely associated with persistent and chronic infections, and physiological heterogeneity such as pH and oxygen gradients renders biofilms highly resistant to conventional antibiotics. To date, effectively treating biofilm infections remains a significant challenge. Herein, we report the fabrication of micellar nanoparticles adapted to heterogeneous biofilm microenvironments, enabling nitric oxide (NO) release through two distinct photoredox catalysis mechanisms. The key design feature involves the use of tertiary amine (TA) moieties, which function as sacrificial agents to avoid the quenching of photocatalysts under normoxic and neutral pH conditions and proton acceptors at acidic pH to allow deep biofilm penetration. This biofilm-adaptive NO-releasing platform shows excellent antibiofilm activity against ciprofloxacin-resistant Pseudomonas aeruginosa (CRPA) biofilms both in vitro and in a mouse skin infection model, providing a strategy for combating biofilm heterogeneity and biofilm-related infections.

Citing Articles

One pot synthesis of SeTe-ZnO nanoparticles for antibacterial and wound healing applications.

Wang Y, Khan S, Ullah I, Rady A, Aldahmash B, Yu Y RSC Adv. 2025; 15(5):3439-3447.

PMID: 39906629 PMC: 11791623. DOI: 10.1039/d4ra06594h.


An improved bacterial single-cell RNA-seq reveals biofilm heterogeneity.

Yan X, Liao H, Wang C, Huang C, Zhang W, Guo C Elife. 2024; 13.

PMID: 39689163 PMC: 11651652. DOI: 10.7554/eLife.97543.


Photoresponsive Multirole Nanoweapon Camouflaged by Hybrid Cell Membrane Vesicles for Efficient Antibacterial Therapy of Pseudomonas aeruginosa-Infected Pneumonia and Wound.

Liu H, Tang L, Yin Y, Cao Y, Fu C, Feng J Adv Sci (Weinh). 2024; 11(35):e2403101.

PMID: 39007186 PMC: 11425291. DOI: 10.1002/advs.202403101.


A Multifunctional Tissue-Engineering Hydrogel Aimed to Regulate Bacterial Ferroptosis-Like Death and Overcoming Infection Toward Bone Remodeling.

Lu R, Luo Z, Zhang Y, Chen J, Zhang Y, Zhang C Adv Sci (Weinh). 2024; 11(30):e2309820.

PMID: 38896799 PMC: 11321691. DOI: 10.1002/advs.202309820.


Electrospun L-Lysine/Amorphous Calcium Phosphate Loaded Core-Sheath Nanofibers for Managing Oral Biofilm Infections and Promoting Periodontal Tissue Repairment.

Ling Y, Duan M, Lyu W, Yang J, Liu Y, Ren S Int J Nanomedicine. 2024; 19:2917-2938.

PMID: 38525010 PMC: 10961091. DOI: 10.2147/IJN.S453702.

References
1.
Barraud N, Schleheck D, Klebensberger J, Webb J, Hassett D, Rice S . Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. J Bacteriol. 2009; 191(23):7333-42. PMC: 2786556. DOI: 10.1128/JB.00975-09. View

2.
Buksh B, Knutson S, Oakley J, Bissonnette N, Oblinsky D, Schwoerer M . μMap-Red: Proximity Labeling by Red Light Photocatalysis. J Am Chem Soc. 2022; 144(14):6154-6162. PMC: 9843638. DOI: 10.1021/jacs.2c01384. View

3.
Abee T, Kovacs A, Kuipers O, van der Veen S . Biofilm formation and dispersal in Gram-positive bacteria. Curr Opin Biotechnol. 2010; 22(2):172-9. DOI: 10.1016/j.copbio.2010.10.016. View

4.
Cui S, Qiao J, Xiong M . Antibacterial and Biofilm-Eradicating Activities of pH-Responsive Vesicles against . Mol Pharm. 2022; 19(7):2406-2417. DOI: 10.1021/acs.molpharmaceut.2c00165. View

5.
Hobley L, Fung R, Lambert C, Harris M, Dabhi J, King S . Discrete cyclic di-GMP-dependent control of bacterial predation versus axenic growth in Bdellovibrio bacteriovorus. PLoS Pathog. 2012; 8(2):e1002493. PMC: 3271064. DOI: 10.1371/journal.ppat.1002493. View