» Articles » PMID: 19801410

Nitric Oxide Signaling in Pseudomonas Aeruginosa Biofilms Mediates Phosphodiesterase Activity, Decreased Cyclic Di-GMP Levels, and Enhanced Dispersal

Overview
Journal J Bacteriol
Specialty Microbiology
Date 2009 Oct 6
PMID 19801410
Citations 202
Authors
Affiliations
Soon will be listed here.
Abstract

Bacteria in biofilms often undergo active dispersal events and revert to a free-swimming, planktonic state to complete the biofilm life cycle. The signaling molecule nitric oxide (NO) was previously found to trigger biofilm dispersal in the opportunistic pathogen Pseudomonas aeruginosa at low, nontoxic concentrations (N. Barraud, D. J. Hassett, S. H. Hwang, S. A. Rice, S. Kjelleberg, and J. S. Webb, J. Bacteriol. 188:7344-7353, 2006). NO was further shown to increase cell motility and susceptibility to antimicrobials. Recently, numerous studies revealed that increased degradation of the secondary messenger cyclic di-GMP (c-di-GMP) by specific phosphodiesterases (PDEs) triggers a planktonic mode of growth in eubacteria. In this study, the potential link between NO and c-di-GMP signaling was investigated by performing (i) PDE inhibitor studies, (ii) enzymatic assays to measure PDE activity, and (iii) direct quantification of intracellular c-di-GMP levels. The results suggest a role for c-di-GMP signaling in triggering the biofilm dispersal event induced by NO, as dispersal requires PDE activity and addition of NO stimulates PDE and induces the concomitant decrease in intracellular c-di-GMP levels in P. aeruginosa. Furthermore, gene expression studies indicated global responses to low, nontoxic levels of NO in P. aeruginosa biofilms, including upregulation of genes involved in motility and energy metabolism and downregulation of adhesins and virulence factors. Finally, site-directed mutagenesis of candidate genes and physiological characterization of the corresponding mutant strains uncovered that the chemotaxis transducer BdlA is involved in the biofilm dispersal response induced by NO.

Citing Articles

Echinacoside reduces intracellular c-di-GMP levels and potentiates tobramycin activity against Pseudomonas aeruginosa biofilm aggregates.

Cai Y, Hong F, De Craemer A, Malone J, Crabbe A, Coenye T NPJ Biofilms Microbiomes. 2025; 11(1):40.

PMID: 40055321 PMC: 11889090. DOI: 10.1038/s41522-025-00673-2.


Multifaceted Antipathogenic Activity of Two Novel Natural Products, Chermesiterpenoid B and Chermesiterpenoid B Seco Acid Methyl Ester, Against Pseudomonas aeruginosa.

Li D, Wang Y, Li H, Niu W, Hong J, Jung J Microb Biotechnol. 2025; 18(2):e70101.

PMID: 39936740 PMC: 11815713. DOI: 10.1111/1751-7915.70101.


Anti-Biofilm Agents to Overcome Antibiotic Resistance.

Hanot M, Lohou E, Sonnet P Pharmaceuticals (Basel). 2025; 18(1).

PMID: 39861155 PMC: 11768670. DOI: 10.3390/ph18010092.


Distinct transcriptome and traits of freshly dispersed cells.

Kalia M, Sauer K mSphere. 2024; 9(12):e0088424.

PMID: 39601567 PMC: 11656770. DOI: 10.1128/msphere.00884-24.


Nanoparticle-Based Nitric Oxide Donors: Exploring Their Antimicrobial and Anti-Biofilm Capabilities.

Tortella Fuentes G, Fincheira P, Rubilar O, Leiva S, Fernandez I, Schoebitz M Antibiotics (Basel). 2024; 13(11).

PMID: 39596741 PMC: 11591520. DOI: 10.3390/antibiotics13111047.


References
1.
Purevdorj-Gage B, Costerton W, Stoodley P . Phenotypic differentiation and seeding dispersal in non-mucoid and mucoid Pseudomonas aeruginosa biofilms. Microbiology (Reading). 2005; 151(Pt 5):1569-1576. DOI: 10.1099/mic.0.27536-0. View

2.
Kulasekara H, Ventre I, Kulasekara B, Lazdunski A, Filloux A, Lory S . A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes. Mol Microbiol. 2005; 55(2):368-80. DOI: 10.1111/j.1365-2958.2004.04402.x. View

3.
Buerk D . Can we model nitric oxide biotransport? A survey of mathematical models for a simple diatomic molecule with surprisingly complex biological activities. Annu Rev Biomed Eng. 2001; 3:109-43. DOI: 10.1146/annurev.bioeng.3.1.109. View

4.
Webb J, Thompson L, James S, Charlton T, Tolker-Nielsen T, Koch B . Cell death in Pseudomonas aeruginosa biofilm development. J Bacteriol. 2003; 185(15):4585-92. PMC: 165772. DOI: 10.1128/JB.185.15.4585-4592.2003. View

5.
Banin E, Brady K, Greenberg E . Chelator-induced dispersal and killing of Pseudomonas aeruginosa cells in a biofilm. Appl Environ Microbiol. 2006; 72(3):2064-9. PMC: 1393226. DOI: 10.1128/AEM.72.3.2064-2069.2006. View