» Articles » PMID: 37543621

Combined PD-L1/TGFβ Blockade Allows Expansion and Differentiation of Stem Cell-like CD8 T Cells in Immune Excluded Tumors

Abstract

TGFβ signaling is associated with non-response to immune checkpoint blockade in patients with advanced cancers, particularly in the immune-excluded phenotype. While previous work demonstrates that converting tumors from excluded to inflamed phenotypes requires attenuation of PD-L1 and TGFβ signaling, the underlying cellular mechanisms remain unclear. Here, we show that TGFβ and PD-L1 restrain intratumoral stem cell-like CD8 T cell (T) expansion and replacement of progenitor-exhausted and dysfunctional CD8 T cells with non-exhausted T effector cells in the EMT6 tumor model in female mice. Upon combined TGFβ/PD-L1 blockade IFNγ CD8 T effector cells show enhanced motility and accumulate in the tumor. Ensuing IFNγ signaling transforms myeloid, stromal, and tumor niches to yield an immune-supportive ecosystem. Blocking IFNγ abolishes the anti-PD-L1/anti-TGFβ therapy efficacy. Our data suggest that TGFβ works with PD-L1 to prevent T expansion and replacement of exhausted CD8 T cells, thereby maintaining the T cell compartment in a dysfunctional state.

Citing Articles

Enzymatically responsive nanocarriers targeting PD-1 and TGF-β pathways reverse immunotherapeutic resistance and elicit robust therapeutic efficacy.

Yen Y, Zhang Z, Chen A, Qiu Y, Liu Q, Wang Q J Nanobiotechnology. 2025; 23(1):124.

PMID: 39972327 PMC: 11841268. DOI: 10.1186/s12951-025-03129-z.


IL-27 elicits a cytotoxic CD8 T cell program to enforce tumour control.

Breart B, Williams K, Krimm S, Wong T, Kayser B, Wang L Nature. 2025; .

PMID: 39910298 DOI: 10.1038/s41586-024-08510-w.


Spatial profiling identifies regionally distinct microenvironments and targetable immunosuppressive mechanisms in pediatric osteosarcoma pulmonary metastases.

Eigenbrood J, Wong N, Mallory P, Pereira J, Morris-Ii D, Morris D bioRxiv. 2025; .

PMID: 39896512 PMC: 11785069. DOI: 10.1101/2025.01.22.631350.


Syngeneic natural killer cell therapy activates dendritic and T cells in metastatic lungs and effectively treats low-burden metastases.

Huang S, Lai Y, Liao H, Chang C, Ma R, Chen Y Elife. 2025; 13.

PMID: 39835538 PMC: 11750138. DOI: 10.7554/eLife.99010.


Myeloid cells meet CD8 T cell exhaustion in cancer: What, why and how.

Zhai Y, Liang X, Deng M Chin J Cancer Res. 2025; 36(6):616-651.

PMID: 39802897 PMC: 11724180. DOI: 10.21147/j.issn.1000-9604.2024.06.04.


References
1.
Groom J, Luster A . CXCR3 in T cell function. Exp Cell Res. 2011; 317(5):620-31. PMC: 3065205. DOI: 10.1016/j.yexcr.2010.12.017. View

2.
Marcais A, Coupet C, Walzer T, Tomkowiak M, Ghittoni R, Marvel J . Cell-autonomous CCL5 transcription by memory CD8 T cells is regulated by IL-4. J Immunol. 2006; 177(7):4451-7. DOI: 10.4049/jimmunol.177.7.4451. View

3.
Li L, Byrne S, Rainville N, Su S, Jachimowicz E, Aucher A . Brief report: serpin Spi2A as a novel modulator of hematopoietic progenitor cell formation. Stem Cells. 2014; 32(9):2550-6. PMC: 4138266. DOI: 10.1002/stem.1778. View

4.
Lind H, Gameiro S, Jochems C, Donahue R, Strauss J, Gulley MD J . Dual targeting of TGF-β and PD-L1 via a bifunctional anti-PD-L1/TGF-βRII agent: status of preclinical and clinical advances. J Immunother Cancer. 2020; 8(1). PMC: 7057416. DOI: 10.1136/jitc-2019-000433. View

5.
Derynck R, Turley S, Akhurst R . TGFβ biology in cancer progression and immunotherapy. Nat Rev Clin Oncol. 2020; 18(1):9-34. PMC: 9721352. DOI: 10.1038/s41571-020-0403-1. View