» Articles » PMID: 31282856

Identifying Gene Expression Programs of Cell-type Identity and Cellular Activity with Single-cell RNA-Seq

Overview
Journal Elife
Specialty Biology
Date 2019 Jul 9
PMID 31282856
Citations 200
Authors
Affiliations
Soon will be listed here.
Abstract

Identifying gene expression programs underlying both cell-type identity and cellular activities (e.g. life-cycle processes, responses to environmental cues) is crucial for understanding the organization of cells and tissues. Although single-cell RNA-Seq (scRNA-Seq) can quantify transcripts in individual cells, each cell's expression profile may be a mixture of both types of programs, making them difficult to disentangle. Here, we benchmark and enhance the use of matrix factorization to solve this problem. We show with simulations that a method we call consensus non-negative matrix factorization (cNMF) accurately infers identity and activity programs, including their relative contributions in each cell. To illustrate the insights this approach enables, we apply it to published brain organoid and visual cortex scRNA-Seq datasets; cNMF refines cell types and identifies both expected (e.g. cell cycle and hypoxia) and novel activity programs, including programs that may underlie a neurosecretory phenotype and synaptogenesis.

Citing Articles

Programs, origins and immunomodulatory functions of myeloid cells in glioma.

Miller T, El Farran C, Couturier C, Chen Z, DAntonio J, Verga J Nature. 2025; .

PMID: 40011771 DOI: 10.1038/s41586-025-08633-8.


Interpretable single-cell factor decomposition using sciRED.

Pouyabahar D, Andrews T, Bader G Nat Commun. 2025; 16(1):1878.

PMID: 39987196 PMC: 11846867. DOI: 10.1038/s41467-025-57157-2.


ChromaFactor: Deconvolution of single-molecule chromatin organization with non-negative matrix factorization.

Gunsalus L, Keiser M, Pollard K PLoS Comput Biol. 2025; 21(2):e1012841.

PMID: 39965010 PMC: 11849981. DOI: 10.1371/journal.pcbi.1012841.


MorPhiC Consortium: towards functional characterization of all human genes.

Adli M, Przybyla L, Burdett T, Burridge P, Cacheiro P, Chang H Nature. 2025; 638(8050):351-359.

PMID: 39939790 DOI: 10.1038/s41586-024-08243-w.


IL-27 elicits a cytotoxic CD8 T cell program to enforce tumour control.

Breart B, Williams K, Krimm S, Wong T, Kayser B, Wang L Nature. 2025; .

PMID: 39910298 DOI: 10.1038/s41586-024-08510-w.


References
1.
Zappia L, Phipson B, Oshlack A . Splatter: simulation of single-cell RNA sequencing data. Genome Biol. 2017; 18(1):174. PMC: 5596896. DOI: 10.1186/s13059-017-1305-0. View

2.
Chen M, Zhou X . Controlling for Confounding Effects in Single Cell RNA Sequencing Studies Using both Control and Target Genes. Sci Rep. 2017; 7(1):13587. PMC: 5648789. DOI: 10.1038/s41598-017-13665-w. View

3.
Segal E, Shapira M, Regev A, Peer D, Botstein D, Koller D . Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet. 2003; 34(2):166-76. DOI: 10.1038/ng1165. View

4.
Klein A, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V . Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015; 161(5):1187-1201. PMC: 4441768. DOI: 10.1016/j.cell.2015.04.044. View

5.
Kotliar D, Veres A, Nagy M, Tabrizi S, Hodis E, Melton D . Identifying gene expression programs of cell-type identity and cellular activity with single-cell RNA-Seq. Elife. 2019; 8. PMC: 6639075. DOI: 10.7554/eLife.43803. View