» Articles » PMID: 33384301

In Situ Genome Sequencing Resolves DNA Sequence and Structure in Intact Biological Samples

Abstract

Understanding genome organization requires integration of DNA sequence and three-dimensional spatial context; however, existing genome-wide methods lack either base pair sequence resolution or direct spatial localization. Here, we describe in situ genome sequencing (IGS), a method for simultaneously sequencing and imaging genomes within intact biological samples. We applied IGS to human fibroblasts and early mouse embryos, spatially localizing thousands of genomic loci in individual nuclei. Using these data, we characterized parent-specific changes in genome structure across embryonic stages, revealed single-cell chromatin domains in zygotes, and uncovered epigenetic memory of global chromosome positioning within individual embryos. These results demonstrate how IGS can directly connect sequence and structure across length scales from single base pairs to whole organisms.

Citing Articles

Quantifying and interpreting biologically meaningful spatial signatures within tumor microenvironments.

Jing S, Wang H, Lin P, Yuan J, Tang Z, Li H NPJ Precis Oncol. 2025; 9(1):68.

PMID: 40069556 PMC: 11897387. DOI: 10.1038/s41698-025-00857-1.


Application of Spatial Omics in the Cardiovascular System.

Hu Y, Jia H, Cui H, Song J Research (Wash D C). 2025; 8:0628.

PMID: 40062231 PMC: 11889335. DOI: 10.34133/research.0628.


From morphology to single-cell molecules: high-resolution 3D histology in biomedicine.

Xu X, Su J, Zhu R, Li K, Zhao X, Fan J Mol Cancer. 2025; 24(1):63.

PMID: 40033282 PMC: 11874780. DOI: 10.1186/s12943-025-02240-x.


Unveiling the role of chromosome structure morphology on gene function through chromosome conformation analysis.

Zhan Y, Yildirim A, Boninsegna L, Alber F Genome Biol. 2025; 26(1):30.

PMID: 39948644 PMC: 11827233. DOI: 10.1186/s13059-024-03472-8.


Visualizing Volumetric and Segmentation Data using Mol* Volumes & Segmentations 2.0.

Chareshneu A, Cantara A, Tichy D, Sehnal D Curr Protoc. 2024; 4(12):e70070.

PMID: 39651964 PMC: 11627126. DOI: 10.1002/cpz1.70070.


References
1.
Luppino J, Park D, Nguyen S, Lan Y, Xu Z, Yunker R . Cohesin promotes stochastic domain intermingling to ensure proper regulation of boundary-proximal genes. Nat Genet. 2020; 52(8):840-848. PMC: 7416539. DOI: 10.1038/s41588-020-0647-9. View

2.
Falk M, Feodorova Y, Naumova N, Imakaev M, Lajoie B, Leonhardt H . Heterochromatin drives compartmentalization of inverted and conventional nuclei. Nature. 2019; 570(7761):395-399. PMC: 7206897. DOI: 10.1038/s41586-019-1275-3. View

3.
Massingham T, Goldman N . Error-correcting properties of the SOLiD Exact Call Chemistry. BMC Bioinformatics. 2012; 13:145. PMC: 3464616. DOI: 10.1186/1471-2105-13-145. View

4.
Fraser J, Williamson I, Bickmore W, Dostie J . An Overview of Genome Organization and How We Got There: from FISH to Hi-C. Microbiol Mol Biol Rev. 2015; 79(3):347-72. PMC: 4517094. DOI: 10.1128/MMBR.00006-15. View

5.
Bao W, Kojima K, Kohany O . Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob DNA. 2015; 6:11. PMC: 4455052. DOI: 10.1186/s13100-015-0041-9. View