» Articles » PMID: 36658222

Mitochondria Regulate Intracellular Coenzyme Q Transport and Ferroptotic Resistance Via STARD7

Overview
Journal Nat Cell Biol
Specialty Cell Biology
Date 2023 Jan 19
PMID 36658222
Authors
Affiliations
Soon will be listed here.
Abstract

Coenzyme Q (or ubiquinone) is a redox-active lipid that serves as universal electron carrier in the mitochondrial respiratory chain and antioxidant in the plasma membrane limiting lipid peroxidation and ferroptosis. Mechanisms allowing cellular coenzyme Q distribution after synthesis within mitochondria are not understood. Here we identify the cytosolic lipid transfer protein STARD7 as a critical factor of intracellular coenzyme Q transport and suppressor of ferroptosis. Dual localization of STARD7 to the intermembrane space of mitochondria and the cytosol upon cleavage by the rhomboid protease PARL ensures the synthesis of coenzyme Q in mitochondria and its transport to the plasma membrane. While mitochondrial STARD7 preserves coenzyme Q synthesis, oxidative phosphorylation function and cristae morphogenesis, cytosolic STARD7 is required for the transport of coenzyme Q to the plasma membrane and protects against ferroptosis. A coenzyme Q variant competes with phosphatidylcholine for binding to purified STARD7 in vitro. Overexpression of cytosolic STARD7 increases ferroptotic resistance of the cells, but limits coenzyme Q abundance in mitochondria and respiratory cell growth. Our findings thus demonstrate the need to coordinate coenzyme Q synthesis and cellular distribution by PARL-mediated STARD7 processing and identify PARL and STARD7 as promising targets to interfere with ferroptosis.

Citing Articles

Functional Specialization of S-Adenosylmethionine Synthases Links Phosphatidylcholine to Mitochondrial Function and Stress Survival.

Munden A, Lui D, Higgins D, Fanelli M, Ngyuen T, Edwards K bioRxiv. 2025; .

PMID: 40027629 PMC: 11870525. DOI: 10.1101/2025.02.20.639242.


FSP1-mediated lipid droplet quality control prevents neutral lipid peroxidation and ferroptosis.

Lange M, Wolk M, Doubravsky C, Hendricks J, Kato S, Otoki Y bioRxiv. 2025; .

PMID: 39829838 PMC: 11741373. DOI: 10.1101/2025.01.06.631537.


The Role and Mechanisms of Ubiquitin-Proteasome System-Mediated Ferroptosis in Neurological Disorders.

Liu X, Wang W, Nie Q, Liu X, Sun L, Ma Q Neurosci Bull. 2025; .

PMID: 39775589 DOI: 10.1007/s12264-024-01343-7.


4-Oxo-β-lactams as Covalent Inhibitors of the Mitochondrial Intramembrane Protease PARL.

Ji S, Bach K, Miriyala V, Dohnalek J, Riopedre-Fernandez M, Lepsik M ACS Med Chem Lett. 2024; 15(12):2101-2106.

PMID: 39691509 PMC: 11647676. DOI: 10.1021/acsmedchemlett.4c00384.


Ferroptosis in schizophrenia: Mechanisms and therapeutic potentials (Review).

Lv S, Luo C Mol Med Rep. 2024; 31(2).

PMID: 39611491 PMC: 11613623. DOI: 10.3892/mmr.2024.13402.


References
1.
Stefely J, Pagliarini D . Biochemistry of Mitochondrial Coenzyme Q Biosynthesis. Trends Biochem Sci. 2017; 42(10):824-843. PMC: 5731490. DOI: 10.1016/j.tibs.2017.06.008. View

2.
Martinez-Reyes I, Cardona L, Kong H, Vasan K, McElroy G, Werner M . Mitochondrial ubiquinol oxidation is necessary for tumour growth. Nature. 2020; 585(7824):288-292. PMC: 7486261. DOI: 10.1038/s41586-020-2475-6. View

3.
Jonassen T, Larsen P, Clarke C . A dietary source of coenzyme Q is essential for growth of long-lived Caenorhabditis elegans clk-1 mutants. Proc Natl Acad Sci U S A. 2001; 98(2):421-6. PMC: 14601. DOI: 10.1073/pnas.98.2.421. View

4.
Luna-Sanchez M, Hidalgo-Gutierrez A, Hildebrandt T, Chaves-Serrano J, Barriocanal-Casado E, Santos-Fandila A . CoQ deficiency causes disruption of mitochondrial sulfide oxidation, a new pathomechanism associated with this syndrome. EMBO Mol Med. 2016; 9(1):78-95. PMC: 5210161. DOI: 10.15252/emmm.201606345. View

5.
Hernandez-Camacho J, Bernier M, Lopez-Lluch G, Navas P . Coenzyme Q Supplementation in Aging and Disease. Front Physiol. 2018; 9:44. PMC: 5807419. DOI: 10.3389/fphys.2018.00044. View