» Articles » PMID: 30674579

Coenzyme Q Biosynthetic Proteins Assemble in a Substrate-dependent Manner into Domains at ER-mitochondria Contacts

Overview
Journal J Cell Biol
Specialty Cell Biology
Date 2019 Jan 25
PMID 30674579
Citations 41
Authors
Affiliations
Soon will be listed here.
Abstract

Coenzyme Q (CoQ) lipids are ancient electron carriers that, in eukaryotes, function in the mitochondrial respiratory chain. In mitochondria, CoQ lipids are built by an inner membrane-associated, multicomponent, biosynthetic pathway via successive steps of isoprenyl tail polymerization, 4-hydroxybenzoate head-to-tail attachment, and head modification, resulting in the production of CoQ. In yeast, we discovered that head-modifying CoQ pathway components selectively colocalize to multiple resolvable domains in vivo, representing supramolecular assemblies. In cells engineered with conditional ON or OFF CoQ pathways, domains were strictly correlated with CoQ production and substrate flux, respectively, indicating that CoQ lipid intermediates are required for domain formation. Mitochondrial CoQ domains were also observed in human cells, underscoring their conserved functional importance. CoQ domains within cells were highly enriched adjacent to ER-mitochondria contact sites. Together, our data suggest that CoQ domains function to facilitate substrate accessibility for processive and efficient CoQ production and distribution in cells.

Citing Articles

Mitochondrial-ER Contact Sites and Tethers Influence the Biosynthesis and Function of Coenzyme Q.

Novales N, Meyer H, Asraf Y, Schuldiner M, Clarke C Contact (Thousand Oaks). 2025; 8:25152564251316350.

PMID: 39906518 PMC: 11792030. DOI: 10.1177/25152564251316350.


Differentiation activates mitochondrial OPA1 processing in myoblast cell lines.

Kaur H, Carrillo O, Garcia I, Ramos I, St Vallier S, De La Torre P Mitochondrion. 2024; 78:101933.

PMID: 38986925 PMC: 11390305. DOI: 10.1016/j.mito.2024.101933.


Mitochondria-ER-PM contacts regulate mitochondrial division and PI(4)P distribution.

Casler J, Harper C, White A, Anderson H, Lackner L J Cell Biol. 2024; 223(9).

PMID: 38781029 PMC: 11116812. DOI: 10.1083/jcb.202308144.


Understanding coenzyme Q.

Wang Y, Lilienfeldt N, Hekimi S Physiol Rev. 2024; 104(4):1533-1610.

PMID: 38722242 PMC: 11495197. DOI: 10.1152/physrev.00040.2023.


A dynamin superfamily-like pseudoenzyme coordinates with MICOS to promote cristae architecture.

Kumar A, Gok M, Nguyen K, Connor O, Reese M, Wideman J Curr Biol. 2024; 34(12):2606-2622.e9.

PMID: 38692277 PMC: 11187654. DOI: 10.1016/j.cub.2024.04.028.


References
1.
Poon W, Barkovich R, Hsu A, Frankel A, Lee P, Shepherd J . Yeast and rat Coq3 and Escherichia coli UbiG polypeptides catalyze both O-methyltransferase steps in coenzyme Q biosynthesis. J Biol Chem. 1999; 274(31):21665-72. DOI: 10.1074/jbc.274.31.21665. View

2.
Jonassen T, Clarke C . Isolation and functional expression of human COQ3, a gene encoding a methyltransferase required for ubiquinone biosynthesis. J Biol Chem. 2000; 275(17):12381-7. DOI: 10.1074/jbc.275.17.12381. View

3.
Westermann B, Neupert W . Mitochondria-targeted green fluorescent proteins: convenient tools for the study of organelle biogenesis in Saccharomyces cerevisiae. Yeast. 2000; 16(15):1421-7. DOI: 10.1002/1097-0061(200011)16:15<1421::AID-YEA624>3.0.CO;2-U. View

4.
Belogrudov G, Lee P, Jonassen T, Hsu A, Gin P, Clarke C . Yeast COQ4 encodes a mitochondrial protein required for coenzyme Q synthesis. Arch Biochem Biophys. 2001; 392(1):48-58. DOI: 10.1006/abbi.2001.2448. View

5.
Thelin A, Schedin S, Dallner G . Half-life of ubiquinone-9 in rat tissues. FEBS Lett. 1992; 313(2):118-20. DOI: 10.1016/0014-5793(92)81425-l. View