» Articles » PMID: 29132502

Transcriptomic and Proteomic Landscape of Mitochondrial Dysfunction Reveals Secondary Coenzyme Q Deficiency in Mammals

Overview
Journal Elife
Specialty Biology
Date 2017 Nov 15
PMID 29132502
Citations 107
Authors
Affiliations
Soon will be listed here.
Abstract

Dysfunction of the oxidative phosphorylation (OXPHOS) system is a major cause of human disease and the cellular consequences are highly complex. Here, we present comparative analyses of mitochondrial proteomes, cellular transcriptomes and targeted metabolomics of five knockout mouse strains deficient in essential factors required for mitochondrial DNA gene expression, leading to OXPHOS dysfunction. Moreover, we describe sequential protein changes during post-natal development and progressive OXPHOS dysfunction in time course analyses in control mice and a middle lifespan knockout, respectively. Very unexpectedly, we identify a new response pathway to OXPHOS dysfunction in which the intra-mitochondrial synthesis of coenzyme Q (ubiquinone, Q) and Q levels are profoundly decreased, pointing towards novel possibilities for therapy. Our extensive omics analyses provide a high-quality resource of altered gene expression patterns under severe OXPHOS deficiency comparing several mouse models, that will deepen our understanding, open avenues for research and provide an important reference for diagnosis and treatment.

Citing Articles

Silica Nanoparticles Loaded With Selenium Quantum Dots Reduce Myocardial Ischemia-Reperfusion Injury by Alleviating Ferroptosis and Mitochondrial Dysfunction.

Li T, Yang B, Liu X, Shi D, Wang Z, Chen Y Int J Nanomedicine. 2025; 20:1843-1864.

PMID: 39958324 PMC: 11829639. DOI: 10.2147/IJN.S500810.


High mitochondrial DNA levels accelerate lung adenocarcinoma progression.

Mennuni M, Wilkie S, Michon P, Alsina D, Filograna R, Lindberg M Sci Adv. 2024; 10(44):eadp3481.

PMID: 39485842 PMC: 11529711. DOI: 10.1126/sciadv.adp3481.


DELE1 maintains muscle proteostasis to promote growth and survival in mitochondrial myopathy.

Lin H, Petersen J, Gilsrud A, Madruga A, DSilva T, Huang X EMBO J. 2024; 43(22):5548-5585.

PMID: 39379554 PMC: 11574132. DOI: 10.1038/s44318-024-00242-x.


Role of ferroptosis in the pathogenesis of heart disease.

Fatima S, Zhou H, Chen Y, Liu Q Front Physiol. 2024; 15:1450656.

PMID: 39318361 PMC: 11420141. DOI: 10.3389/fphys.2024.1450656.


Quantitative proteomics of patient fibroblasts reveal biomarkers and diagnostic signatures of mitochondrial disease.

Correia S, Moedas M, Taylor L, Naess K, Lim A, McFarland R JCI Insight. 2024; 9(20).

PMID: 39288270 PMC: 11530135. DOI: 10.1172/jci.insight.178645.


References
1.
Camara Y, Asin-Cayuela J, Park C, Metodiev M, Shi Y, Ruzzenente B . MTERF4 regulates translation by targeting the methyltransferase NSUN4 to the mammalian mitochondrial ribosome. Cell Metab. 2011; 13(5):527-39. DOI: 10.1016/j.cmet.2011.04.002. View

2.
Khan N, Nikkanen J, Yatsuga S, Jackson C, Wang L, Pradhan S . mTORC1 Regulates Mitochondrial Integrated Stress Response and Mitochondrial Myopathy Progression. Cell Metab. 2017; 26(2):419-428.e5. DOI: 10.1016/j.cmet.2017.07.007. View

3.
Dogan S, Pujol C, Maiti P, Kukat A, Wang S, Hermans S . Tissue-specific loss of DARS2 activates stress responses independently of respiratory chain deficiency in the heart. Cell Metab. 2014; 19(3):458-69. DOI: 10.1016/j.cmet.2014.02.004. View

4.
Ekstrand M, Falkenberg M, Rantanen A, Park C, Gaspari M, Hultenby K . Mitochondrial transcription factor A regulates mtDNA copy number in mammals. Hum Mol Genet. 2004; 13(9):935-44. DOI: 10.1093/hmg/ddh109. View

5.
Tang P, Miles M, Miles L, Quinlan J, Wong B, Wenisch A . Measurement of reduced and oxidized coenzyme Q9 and coenzyme Q10 levels in mouse tissues by HPLC with coulometric detection. Clin Chim Acta. 2004; 341(1-2):173-84. DOI: 10.1016/j.cccn.2003.12.002. View