» Articles » PMID: 36093908

Architectures and Complex Functions of Tandem Riboswitches

Abstract

Riboswitch architectures that involve the binding of a single ligand to a single RNA aptamer domain result in ordinary dose-response curves that require approximately a 100-fold change in ligand concentration to cover nearly the full dynamic range for gene regulation. However, by using multiple riboswitches or aptamer domains in tandem, these ligand-sensing structures can produce additional, complex gene control outcomes. In the current study, we have computationally searched for tandem riboswitch architectures in bacteria to provide a more complete understanding of the diverse biological and biochemical functions of gene control elements that are made exclusively of RNA. Numerous different arrangements of tandem homologous riboswitch architectures are exploited by bacteria to create more 'digital' gene control devices, which operate over a narrower ligand concentration range. Also, two heterologous riboswitch aptamers are sometimes employed to create two-input Boolean logic gates with various types of genetic outputs. These findings illustrate the sophisticated genetic decisions that can be made by using molecular sensors and switches based only on RNA.

Citing Articles

Synthetic Dual-Input Hybrid Riboswitches─Optimized Genetic Regulators in Yeast.

Kelvin D, Arias Rodriguez J, Groher A, Petras K, Suess B ACS Synth Biol. 2025; 14(2):497-509.

PMID: 39902969 PMC: 11854369. DOI: 10.1021/acssynbio.4c00660.


Linker-Mediated Inactivation of the SAM-II Domain in the Tandem SAM-II/SAM-V Riboswitch.

Feng S, Xiao W, Yu Y, Liu G, Zhang Y, Chen T Int J Mol Sci. 2024; 25(20).

PMID: 39457069 PMC: 11508383. DOI: 10.3390/ijms252011288.


Compact RNA sensors for increasingly complex functions of multiple inputs.

Choe C, Andreasson J, Melaine F, Kladwang W, Wu M, Portela F bioRxiv. 2024; .

PMID: 38260323 PMC: 10802310. DOI: 10.1101/2024.01.04.572289.


Customizing cellular signal processing by synthetic multi-level regulatory circuits.

Gao Y, Wang L, Wang B Nat Commun. 2023; 14(1):8415.

PMID: 38110405 PMC: 10728147. DOI: 10.1038/s41467-023-44256-1.


A spermidine riboswitch class in bacteria exploits a close variant of an aptamer for the enzyme cofactor S-adenosylmethionine.

Salvail H, Balaji A, Roth A, Breaker R Cell Rep. 2023; 42(12):113571.

PMID: 38096053 PMC: 10853860. DOI: 10.1016/j.celrep.2023.113571.


References
1.
Ames T, Rodionov D, Weinberg Z, Breaker R . A eubacterial riboswitch class that senses the coenzyme tetrahydrofolate. Chem Biol. 2010; 17(7):681-5. PMC: 3417113. DOI: 10.1016/j.chembiol.2010.05.020. View

2.
Ruff K, Muhammad A, McCown P, Breaker R, Strobel S . Singlet glycine riboswitches bind ligand as well as tandem riboswitches. RNA. 2016; 22(11):1728-1738. PMC: 5066625. DOI: 10.1261/rna.057935.116. View

3.
Serganov A, Patel D . Metabolite recognition principles and molecular mechanisms underlying riboswitch function. Annu Rev Biophys. 2012; 41:343-70. PMC: 4696762. DOI: 10.1146/annurev-biophys-101211-113224. View

4.
Jones C, Ferre-DAmare A . Crystal structure of a c-di-AMP riboswitch reveals an internally pseudo-dimeric RNA. EMBO J. 2014; 33(22):2692-703. PMC: 4282576. DOI: 10.15252/embj.201489209. View

5.
Greenlee E, Stav S, Atilho R, Brewer K, Harris K, Malkowski S . Challenges of ligand identification for the second wave of orphan riboswitch candidates. RNA Biol. 2017; 15(3):377-390. PMC: 5927730. DOI: 10.1080/15476286.2017.1403002. View