» Articles » PMID: 37855663

Ribocentre-switch: a Database of Riboswitches

Abstract

Riboswitches are regulatory elements found in the untranslated regions (UTRs) of certain mRNA molecules. They typically comprise two distinct domains: an aptamer domain that can bind to specific small molecules, and an expression platform that controls gene expression. Riboswitches work by undergoing a conformational change upon binding to their specific ligand, thus activating or repressing the genes downstream. This mechanism allows gene expression regulation in response to metabolites or small molecules. To systematically summarise riboswitch structures and their related ligand binding functions, we present Ribocentre-switch, a comprehensive database of riboswitches, including the information as follows: sequences, structures, functions, ligand binding pockets and biological applications. It encompasses 56 riboswitches and 26 orphan riboswitches from over 430 references, with a total of 89 591 sequences. It serves as a good resource for comparing different riboswitches and facilitating the identification of potential riboswitch candidates. Therefore, it may facilitate the understanding of RNA structural conformational changes in response to ligand signaling. The database is publicly available at https://riboswitch.ribocentre.org.

Citing Articles

R2DT: a comprehensive platform for visualizing RNA secondary structure.

McCann H, Meade C, Williams L, Petrov A, Johnson P, Simon A Nucleic Acids Res. 2025; 53(4).

PMID: 39921562 PMC: 11806352. DOI: 10.1093/nar/gkaf032.


R2DT: A COMPREHENSIVE PLATFORM FOR VISUALISING RNA SECONDARY STRUCTURE.

McCann H, Meade C, Williams L, Petrov A, Johnson P, Simon A bioRxiv. 2025; .

PMID: 39803519 PMC: 11722224. DOI: 10.1101/2024.09.29.611006.


Deciphering ligand and metal ion dependent intricate folding landscape of Vc2 c-di-GMP riboswitch aptamer.

Shin J, Choi S, An S, Bang K, Song H, Suh J Nucleic Acids Res. 2025; 53(1.

PMID: 39777471 PMC: 11705072. DOI: 10.1093/nar/gkae1296.


A general strategy for engineering GU base pairs to facilitate RNA crystallization.

Ren Y, Lin X, Liao W, Peng X, Deng J, Zhang Z Nucleic Acids Res. 2024; 53(3).

PMID: 39721592 PMC: 11797044. DOI: 10.1093/nar/gkae1218.


The 2024 Nucleic Acids Research database issue and the online molecular biology database collection.

Rigden D, Fernandez X Nucleic Acids Res. 2023; 52(D1):D1-D9.

PMID: 38035367 PMC: 10767945. DOI: 10.1093/nar/gkad1173.

References
1.
Montange R, Batey R . Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. Nature. 2006; 441(7097):1172-5. DOI: 10.1038/nature04819. View

2.
Gendron P, Lemieux S, Major F . Quantitative analysis of nucleic acid three-dimensional structures. J Mol Biol. 2001; 308(5):919-36. DOI: 10.1006/jmbi.2001.4626. View

3.
Kavita K, Breaker R . Discovering riboswitches: the past and the future. Trends Biochem Sci. 2022; 48(2):119-141. PMC: 10043782. DOI: 10.1016/j.tibs.2022.08.009. View

4.
Howe J, Wang H, Fischmann T, Balibar C, Xiao L, Galgoci A . Selective small-molecule inhibition of an RNA structural element. Nature. 2015; 526(7575):672-7. DOI: 10.1038/nature15542. View

5.
Das R, Watkins A . RiboDraw: semiautomated two-dimensional drawing of RNA tertiary structure diagrams. NAR Genom Bioinform. 2021; 3(4):lqab091. PMC: 8515840. DOI: 10.1093/nargab/lqab091. View