» Articles » PMID: 36007540

Embryo model Completes Gastrulation to Neurulation and Organogenesis

Abstract

Embryonic stem (ES) cells can undergo many aspects of mammalian embryogenesis in vitro, but their developmental potential is substantially extended by interactions with extraembryonic stem cells, including trophoblast stem (TS) cells, extraembryonic endoderm stem (XEN) cells and inducible XEN (iXEN) cells. Here we assembled stem cell-derived embryos in vitro from mouse ES cells, TS cells and iXEN cells and showed that they recapitulate the development of whole natural mouse embryo in utero up to day 8.5 post-fertilization. Our embryo model displays headfolds with defined forebrain and midbrain regions and develops a beating heart-like structure, a trunk comprising a neural tube and somites, a tail bud containing neuromesodermal progenitors, a gut tube, and primordial germ cells. This complete embryo model develops within an extraembryonic yolk sac that initiates blood island development. Notably, we demonstrate that the neurulating embryo model assembled from Pax6-knockout ES cells aggregated with wild-type TS cells and iXEN cells recapitulates the ventral domain expansion of the neural tube that occurs in natural, ubiquitous Pax6-knockout embryos. Thus, these complete embryoids are a powerful in vitro model for dissecting the roles of diverse cell lineages and genes in development. Our results demonstrate the self-organization ability of ES cells and two types of extraembryonic stem cells to reconstitute mammalian development through and beyond gastrulation to neurulation and early organogenesis.

Citing Articles

Generation of transient totipotent blastomere-like stem cells by short-term high-dose Pladienolide B treatment.

Zhang W, An S, Hou S, He X, Xiang J, Yan H Sci China Life Sci. 2025; .

PMID: 40024996 DOI: 10.1007/s11427-024-2774-2.


AI-based approach to dissect the variability of mouse stem cell-derived embryo models.

Caldarelli P, Deininger L, Zhao S, Panda P, Yang C, Mikut R Nat Commun. 2025; 16(1):1772.

PMID: 39971935 PMC: 11839995. DOI: 10.1038/s41467-025-56908-5.


Stem cell-based embryo models: a tool to study early human development.

Wu B, Neupane J, Zhou Y, Zhang J, Chen Y, Surani M Sci China Life Sci. 2025; .

PMID: 39969747 DOI: 10.1007/s11427-024-2741-1.


Innovations in aging biology: highlights from the ARDD emerging science & technologies workshop.

Unfried M, Schmauck-Medina T, Amin N, Boyden E, Fuellen G, Han J NPJ Aging. 2025; 11(1):8.

PMID: 39966395 PMC: 11836439. DOI: 10.1038/s41514-025-00193-5.


Embryonic Stem Cell Differentiation to Definitive Endoderm As a Model of Heterogeneity Onset During Germ Layer Specification.

Gordeev M, Zinovyeva A, Petrenko E, Lomert E, Aksenov N, Tomilin A Acta Naturae. 2025; 16(4):62-72.

PMID: 39877013 PMC: 11771848. DOI: 10.32607/actanaturae.27510.


References
1.
Ten Berge D, Koole W, Fuerer C, Fish M, Eroglu E, Nusse R . Wnt signaling mediates self-organization and axis formation in embryoid bodies. Cell Stem Cell. 2008; 3(5):508-18. PMC: 2683270. DOI: 10.1016/j.stem.2008.09.013. View

2.
van den Brink S, Baillie-Johnson P, Balayo T, Hadjantonakis A, Nowotschin S, Turner D . Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells. Development. 2014; 141(22):4231-42. PMC: 4302915. DOI: 10.1242/dev.113001. View

3.
Xu P, Moraes Borges R, Fillatre J, de Oliveira-Melo M, Cheng T, Thisse B . Construction of a mammalian embryo model from stem cells organized by a morphogen signalling centre. Nat Commun. 2021; 12(1):3277. PMC: 8172561. DOI: 10.1038/s41467-021-23653-4. View

4.
Beccari L, Moris N, Girgin M, Turner D, Baillie-Johnson P, Cossy A . Multi-axial self-organization properties of mouse embryonic stem cells into gastruloids. Nature. 2018; 562(7726):272-276. DOI: 10.1038/s41586-018-0578-0. View

5.
Veenvliet J, Bolondi A, Kretzmer H, Haut L, Scholze-Wittler M, Schifferl D . Mouse embryonic stem cells self-organize into trunk-like structures with neural tube and somites. Science. 2020; 370(6522). DOI: 10.1126/science.aba4937. View