» Articles » PMID: 35650186

Transport of Intensity Diffraction Tomography with Non-interferometric Synthetic Aperture for Three-dimensional Label-free Microscopy

Overview
Journal Light Sci Appl
Publisher Springer Nature
Date 2022 Jun 1
PMID 35650186
Authors
Affiliations
Soon will be listed here.
Abstract

We present a new label-free three-dimensional (3D) microscopy technique, termed transport of intensity diffraction tomography with non-interferometric synthetic aperture (TIDT-NSA). Without resorting to interferometric detection, TIDT-NSA retrieves the 3D refractive index (RI) distribution of biological specimens from 3D intensity-only measurements at various illumination angles, allowing incoherent-diffraction-limited quantitative 3D phase-contrast imaging. The unique combination of z-scanning the sample with illumination angle diversity in TIDT-NSA provides strong defocus phase contrast and better optical sectioning capabilities suitable for high-resolution tomography of thick biological samples. Based on an off-the-shelf bright-field microscope with a programmable light-emitting-diode (LED) illumination source, TIDT-NSA achieves an imaging resolution of 206 nm laterally and 520 nm axially with a high-NA oil immersion objective. We validate the 3D RI tomographic imaging performance on various unlabeled fixed and live samples, including human breast cancer cell lines MCF-7, human hepatocyte carcinoma cell lines HepG2, mouse macrophage cell lines RAW 264.7, Caenorhabditis elegans (C. elegans), and live Henrietta Lacks (HeLa) cells. These results establish TIDT-NSA as a new non-interferometric approach to optical diffraction tomography and 3D label-free microscopy, permitting quantitative characterization of cell morphology and time-dependent subcellular changes for widespread biological and medical applications.

Citing Articles

Multi-modal transport of intensity diffraction tomography microscopy with an electrically tunable lens [Invited].

Zhou Z, Zhang R, Zhou N, Chen Q, Zuo C Biomed Opt Express. 2025; 16(2):837-848.

PMID: 39958838 PMC: 11828454. DOI: 10.1364/BOE.545258.


Transport-of-intensity phase imaging using commercially available confocal microscope.

Yoneda N, Sakamoto J, Tomoi T, Nemoto T, Tamada Y, Matoba O J Biomed Opt. 2024; 29(11):116002.

PMID: 39512418 PMC: 11542725. DOI: 10.1117/1.JBO.29.11.116002.


Quantitative phase imaging endoscopy with a metalens.

Shanker A, Froch J, Mukherjee S, Zhelyeznyakov M, Brunton S, Seibel E Light Sci Appl. 2024; 13(1):305.

PMID: 39511136 PMC: 11543855. DOI: 10.1038/s41377-024-01587-y.


Towards photoacoustic human imaging: Shining a new light on clinical diagnostics.

Wang Z, Yang F, Zhang W, Xiong K, Yang S Fundam Res. 2024; 4(5):1314-1330.

PMID: 39431136 PMC: 11489505. DOI: 10.1016/j.fmre.2023.01.008.


Ultrabroadband Optical Diffraction Tomography.

Hormann M, Camargo F, van Hulst N, Cerullo G, Liebel M ACS Photonics. 2024; 11(9):3680-3687.

PMID: 39310293 PMC: 11413850. DOI: 10.1021/acsphotonics.4c00797.


References
1.
Zuo C, Chen Q, Qu W, Asundi A . High-speed transport-of-intensity phase microscopy with an electrically tunable lens. Opt Express. 2013; 21(20):24060-75. DOI: 10.1364/OE.21.024060. View

2.
Axelrod D, Burghardt T, Thompson N . Total internal reflection fluorescence. Annu Rev Biophys Bioeng. 1984; 13:247-68. DOI: 10.1146/annurev.bb.13.060184.001335. View

3.
Hell S, Wichmann J . Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett. 2009; 19(11):780-2. DOI: 10.1364/ol.19.000780. View

4.
Helmchen F, Denk W . Deep tissue two-photon microscopy. Nat Methods. 2005; 2(12):932-40. DOI: 10.1038/nmeth818. View

5.
Zheng G, Horstmeyer R, Yang C . Wide-field, high-resolution Fourier ptychographic microscopy. Nat Photonics. 2014; 7(9):739-745. PMC: 4169052. DOI: 10.1038/nphoton.2013.187. View