» Articles » PMID: 18174397

Three-dimensional Super-resolution Imaging by Stochastic Optical Reconstruction Microscopy

Overview
Journal Science
Specialty Science
Date 2008 Jan 5
PMID 18174397
Citations 973
Authors
Affiliations
Soon will be listed here.
Abstract

Recent advances in far-field fluorescence microscopy have led to substantial improvements in image resolution, achieving a near-molecular resolution of 20 to 30 nanometers in the two lateral dimensions. Three-dimensional (3D) nanoscale-resolution imaging, however, remains a challenge. We demonstrated 3D stochastic optical reconstruction microscopy (STORM) by using optical astigmatism to determine both axial and lateral positions of individual fluorophores with nanometer accuracy. Iterative, stochastic activation of photoswitchable probes enables high-precision 3D localization of each probe, and thus the construction of a 3D image, without scanning the sample. Using this approach, we achieved an image resolution of 20 to 30 nanometers in the lateral dimensions and 50 to 60 nanometers in the axial dimension. This development allowed us to resolve the 3D morphology of nanoscopic cellular structures.

Citing Articles

Uptake of small extracellular vesicles by recipient cells is facilitated by paracrine adhesion signaling.

Hirosawa K, Sato Y, Kasai R, Yamaguchi E, Komura N, Ando H Nat Commun. 2025; 16(1):2419.

PMID: 40075063 PMC: 11903687. DOI: 10.1038/s41467-025-57617-9.


Light sheet illumination in single-molecule localization microscopy for imaging of cellular architectures and molecular dynamics.

Cheng S, Nakatani Y, Gagliano G, Saliba N, Gustavsson A Npj Imaging. 2025; 2(1):49.

PMID: 40018679 PMC: 11860233. DOI: 10.1038/s44303-024-00057-9.


Lipid-Directed Covalent Labeling of Plasma Membranes for Long-Term Imaging, Barcoding and Manipulation of Cells.

Aknine N, Pelletier R, Klymchenko A JACS Au. 2025; 5(2):922-936.

PMID: 40017781 PMC: 11863151. DOI: 10.1021/jacsau.4c01134.


Localizing axial dense emitters based on single-helix point spread function and compressed sensing.

Wu H, Chen D, Ji Y, Xiang G, Ni Y, Li H Nanophotonics. 2025; 14(4):535-543.

PMID: 39975634 PMC: 11834055. DOI: 10.1515/nanoph-2024-0516.


Dynamic molecular architecture of the synaptonemal complex.

Kohler S, Wojcik M, Xu K, Dernburg A Sci Adv. 2025; 11(4):eadq9374.

PMID: 39841849 PMC: 11753403. DOI: 10.1126/sciadv.adq9374.


References
1.
Slepnev V, De Camilli P . Accessory factors in clathrin-dependent synaptic vesicle endocytosis. Nat Rev Neurosci. 2001; 1(3):161-72. DOI: 10.1038/35044540. View

2.
Heuser J, Anderson R . Hypertonic media inhibit receptor-mediated endocytosis by blocking clathrin-coated pit formation. J Cell Biol. 1989; 108(2):389-400. PMC: 2115439. DOI: 10.1083/jcb.108.2.389. View

3.
Gelles J, Schnapp B, Sheetz M . Tracking kinesin-driven movements with nanometre-scale precision. Nature. 1988; 331(6155):450-3. DOI: 10.1038/331450a0. View

4.
Barak L, Webb W . Fluorescent low density lipoprotein for observation of dynamics of individual receptor complexes on cultured human fibroblasts. J Cell Biol. 1981; 90(3):595-604. PMC: 2111891. DOI: 10.1083/jcb.90.3.595. View

5.
Zipfel W, Williams R, Webb W . Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol. 2003; 21(11):1369-77. DOI: 10.1038/nbt899. View