» Articles » PMID: 35583926

Seipin Transmembrane Segments Critically Function in Triglyceride Nucleation and Lipid Droplet Budding from the Membrane

Overview
Journal Elife
Specialty Biology
Date 2022 May 18
PMID 35583926
Authors
Affiliations
Soon will be listed here.
Abstract

Lipid droplets (LDs) are organelles formed in the endoplasmic reticulum (ER) to store triacylglycerol (TG) and sterol esters. The ER protein seipin is key for LD biogenesis. Seipin forms a cage-like structure, with each seipin monomer containing a conserved hydrophobic helix and two transmembrane (TM) segments. How the different parts of seipin function in TG nucleation and LD budding is poorly understood. Here, we utilized molecular dynamics simulations of human seipin, along with cell-based experiments, to study seipin's functions in protein-lipid interactions, lipid diffusion, and LD maturation. An all-atom simulation indicates that seipin TM segment residues and hydrophobic helices residues located in the phospholipid tail region of the bilayer attract TG. Simulating larger, growing LDs with coarse-grained models, we find that the seipin TM segments form a constricted neck structure to facilitate conversion of a flat oil lens into a budding LD. Using cell experiments and simulations, we also show that conserved, positively charged residues at the end of seipin's TM segments affect LD maturation. We propose a model in which seipin TM segments critically function in TG nucleation and LD growth.

Citing Articles

Seipin governs phosphatidic acid homeostasis at the inner nuclear membrane.

Romanauska A, Stankunas E, Schuldiner M, Kohler A Nat Commun. 2024; 15(1):10486.

PMID: 39622802 PMC: 11612446. DOI: 10.1038/s41467-024-54811-z.


Involvement of a battery of investigated genes in lipid droplet pathophysiology and associated comorbidities.

Al Harake S, Abedin Y, Hatoum F, Nassar N, Ali A, Nassar A Adipocyte. 2024; 13(1):2403380.

PMID: 39329369 PMC: 11445895. DOI: 10.1080/21623945.2024.2403380.


Lipid organization by the Caveolin-1 complex.

Liebl K, Voth G Biophys J. 2024; 123(21):3688-3697.

PMID: 39306671 PMC: 11560304. DOI: 10.1016/j.bpj.2024.09.018.


Dynamical modelling of lipid droplet formation suggests a key function of membrane phospholipids.

Holzhutter H FEBS J. 2024; 292(1):206-225.

PMID: 39132700 PMC: 11705222. DOI: 10.1111/febs.17238.


Cellular communication through extracellular vesicles and lipid droplets.

Amarasinghe I, Phillips W, Hill A, Cheng L, Helbig K, Willms E J Extracell Biol. 2024; 2(3):e77.

PMID: 38938415 PMC: 11080893. DOI: 10.1002/jex2.77.


References
1.
Georgiades P, Allan V, Wright G, Woodman P, Udommai P, Chung M . The flexibility and dynamics of the tubules in the endoplasmic reticulum. Sci Rep. 2017; 7(1):16474. PMC: 5705721. DOI: 10.1038/s41598-017-16570-4. View

2.
Hopf T, Green A, Schubert B, Mersmann S, Scharfe C, Ingraham J . The EVcouplings Python framework for coevolutionary sequence analysis. Bioinformatics. 2018; 35(9):1582-1584. PMC: 6499242. DOI: 10.1093/bioinformatics/bty862. View

3.
Teixeira V, Johnsen L, Martinez-Montanes F, Grippa A, Buxo L, Idrissi F . Regulation of lipid droplets by metabolically controlled Ldo isoforms. J Cell Biol. 2017; 217(1):127-138. PMC: 5748980. DOI: 10.1083/jcb.201704115. View

4.
Yu Y, Kramer A, Venable R, Simmonett A, MacKerell Jr A, Klauda J . Semi-automated Optimization of the CHARMM36 Lipid Force Field to Include Explicit Treatment of Long-Range Dispersion. J Chem Theory Comput. 2021; 17(3):1562-1580. PMC: 8059446. DOI: 10.1021/acs.jctc.0c01326. View

5.
Hess B . P-LINCS:  A Parallel Linear Constraint Solver for Molecular Simulation. J Chem Theory Comput. 2015; 4(1):116-22. DOI: 10.1021/ct700200b. View