» Articles » PMID: 35455981

MicroRNA-like SnoRNA-Derived RNAs (sdRNAs) Promote Castration-Resistant Prostate Cancer

Abstract

We have identified 38 specifically excised, differentially expressed snoRNA fragments (sdRNAs) in TCGA prostate cancer (PCa) patient samples as compared to normal prostate controls. SnoRNA-derived fragments sdRNA-D19b and -A24 emerged among the most differentially expressed and were selected for further experimentation. We found that the overexpression of either sdRNA significantly increased PC3 (a well-established model of castration-resistant prostate cancer (CRPC)) cell proliferation, and that sdRNA-D19b overexpression also markedly increased the rate of PC3 cell migration. In addition, both sdRNAs provided drug-specific resistances with sdRNA-D19b levels correlating with paclitaxel resistance and sdRNA-24A conferring dasatinib resistance. In silico and in vitro analyses revealed that two established PCa tumor suppressor genes, CD44 and CDK12, represent targets for sdRNA-D19b and sdRNA-A24, respectively. This outlines a biologically coherent mechanism by which sdRNAs downregulate tumor suppressors in AR-PCa to enhance proliferative and metastatic capabilities and to encourage chemotherapeutic resistance. Aggressive proliferation, rampant metastasis, and recalcitrance to chemotherapy are core characteristics of CRPC that synergize to produce a pathology that ranks second in cancer-related deaths for men. This study defines sdRNA-D19b and -A24 as contributors to AR-PCa, potentially providing novel biomarkers and therapeutic targets of use in PCa clinical intervention.

Citing Articles

sdRNA-D43 derived from small nucleolar RNA snoRD43 improves chondrocyte senescence and osteoarthritis progression by negatively regulating PINK1/Parkin-mediated mitophagy pathway via dual-targeting NRF1 and WIPI2.

Deng Z, Li C, Hu S, Zhong Y, Li W, Lin Z Cell Commun Signal. 2025; 23(1):77.

PMID: 39934774 PMC: 11817878. DOI: 10.1186/s12964-024-01975-2.


SnoRNAs: The promising targets for anti-tumor therapy.

Hu X, Cui W, Liu M, Zhang F, Zhao Y, Zhang M J Pharm Anal. 2024; 14(11):101064.

PMID: 39634568 PMC: 11613181. DOI: 10.1016/j.jpha.2024.101064.


tRNA, yRNA, and rRNA fragment excisions do not involve canonical microRNA biogenesis machinery.

Godang N, Nguyen A, DeMeis J, Paudel S, Campbell N, Barnes K MicroPubl Biol. 2024; 2024.

PMID: 39634108 PMC: 11615671. DOI: 10.17912/micropub.biology.001332.


Small Nucleolar RNAs in Head and Neck Squamous Cell Carcinomas.

Duan C, Abola Y, Zhao J, Wang Y J Dent Res. 2024; 104(1):5-16.

PMID: 39449142 PMC: 11667199. DOI: 10.1177/00220345241279369.


SARS-Cov-2 small viral RNA suppresses gene expression via complementary binding to mRNA 3' UTR.

Delcher H, DeMeis J, Ghobar N, Godang N, Knight S, Alqudah S MicroPubl Biol. 2024; 2024.

PMID: 38312351 PMC: 10835431. DOI: 10.17912/micropub.biology.000790.


References
1.
Giacinti S, Poti G, Roberto M, Macrini S, Bassanelli M, Di Pietro F . Molecular Basis of Drug Resistance and Insights for New Treatment Approaches in mCRPC. Anticancer Res. 2018; 38(11):6029-6039. DOI: 10.21873/anticanres.12953. View

2.
Stepanov G, Filippova J, Nushtaeva A, Kuligina E, Koval O, Richter V . Artificial Analogues of Circulating Box C/D RNAs Induce Strong Innate Immune Response and MicroRNA Activation in Human Adenocarcinoma Cells. Adv Exp Med Biol. 2016; 924:121-125. DOI: 10.1007/978-3-319-42044-8_24. View

3.
Zaheer U, Faheem M, Qadri I, Begum N, Yassine H, Al Thani A . Expression profile of MicroRNA: An Emerging Hallmark of Cancer. Curr Pharm Des. 2019; 25(6):642-653. DOI: 10.2174/1386207322666190325122821. View

4.
Yu F, Bracken C, Pillman K, Lawrence D, Goodall G, Callen D . p53 Represses the Oncogenic Sno-MiR-28 Derived from a SnoRNA. PLoS One. 2015; 10(6):e0129190. PMC: 4465335. DOI: 10.1371/journal.pone.0129190. View

5.
Ender C, Krek A, Friedlander M, Beitzinger M, Weinmann L, Chen W . A human snoRNA with microRNA-like functions. Mol Cell. 2008; 32(4):519-28. DOI: 10.1016/j.molcel.2008.10.017. View