» Articles » PMID: 35288718

CRISPR Somatic Genome Engineering and Cancer Modeling in the Mouse Pancreas and Liver

Abstract

Genetically engineered mouse models (GEMMs) transformed the study of organismal disease phenotypes but are limited by their lengthy generation in embryonic stem cells. Here, we describe methods for rapid and scalable genome engineering in somatic cells of the liver and pancreas through delivery of CRISPR components into living mice. We introduce the spectrum of genetic tools, delineate viral and nonviral CRISPR delivery strategies and describe a series of applications, ranging from gene editing and cancer modeling to chromosome engineering or CRISPR multiplexing and its spatio-temporal control. Beyond experimental design and execution, the protocol describes quantification of genetic and functional editing outcomes, including sequencing approaches, data analysis and interpretation. Compared to traditional knockout mice, somatic GEMMs face an increased risk for mouse-to-mouse variability because of the higher experimental demands of the procedures. The robust protocols described here will help unleash the full potential of somatic genome manipulation. Depending on the delivery method and envisaged application, the protocol takes 3-5 weeks.

Citing Articles

Rat Models of Breast Cancer.

Bu W, Li Y Adv Exp Med Biol. 2025; 1464():123-148.

PMID: 39821024 DOI: 10.1007/978-3-031-70875-6_8.


Biomarkers and experimental models for cancer immunology investigation.

Xu H, Jia Z, Liu F, Li J, Huang Y, Jiang Y MedComm (2020). 2023; 4(6):e437.

PMID: 38045830 PMC: 10693314. DOI: 10.1002/mco2.437.


Research progress and application of the CRISPR/Cas9 gene-editing technology based on hepatocellular carcinoma.

Yu S, Zhao R, Zhang B, Lai C, Li L, Shen J Asian J Pharm Sci. 2023; 18(4):100828.

PMID: 37583709 PMC: 10424087. DOI: 10.1016/j.ajps.2023.100828.


Efficient cancer modeling through CRISPR-Cas9/HDR-based somatic precision gene editing in mice.

Bu W, Creighton C, Heavener K, Gutierrez C, Dou Y, Ku A Sci Adv. 2023; 9(19):eade0059.

PMID: 37172086 PMC: 10181191. DOI: 10.1126/sciadv.ade0059.


Mechanisms driving the immunoregulatory function of cancer cells.

van Weverwijk A, de Visser K Nat Rev Cancer. 2023; 23(4):193-215.

PMID: 36717668 DOI: 10.1038/s41568-022-00544-4.


References
1.
Bradley A, Evans M, Kaufman M, Robertson E . Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature. 1984; 309(5965):255-6. DOI: 10.1038/309255a0. View

2.
Doetschman T, Gregg R, Maeda N, Hooper M, Melton D, Thompson S . Targetted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature. 1987; 330(6148):576-8. DOI: 10.1038/330576a0. View

3.
Kersten K, de Visser K, van Miltenburg M, Jonkers J . Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol Med. 2016; 9(2):137-153. PMC: 5286388. DOI: 10.15252/emmm.201606857. View

4.
Weber J, Rad R . Engineering CRISPR mouse models of cancer. Curr Opin Genet Dev. 2019; 54:88-96. DOI: 10.1016/j.gde.2019.04.001. View

5.
Weber J, Ollinger R, Friedrich M, Ehmer U, Barenboim M, Steiger K . CRISPR/Cas9 somatic multiplex-mutagenesis for high-throughput functional cancer genomics in mice. Proc Natl Acad Sci U S A. 2015; 112(45):13982-7. PMC: 4653208. DOI: 10.1073/pnas.1512392112. View