» Articles » PMID: 34711971

Deep Learning and Alignment of Spatially Resolved Single-cell Transcriptomes with Tangram

Abstract

Charting an organs' biological atlas requires us to spatially resolve the entire single-cell transcriptome, and to relate such cellular features to the anatomical scale. Single-cell and single-nucleus RNA-seq (sc/snRNA-seq) can profile cells comprehensively, but lose spatial information. Spatial transcriptomics allows for spatial measurements, but at lower resolution and with limited sensitivity. Targeted in situ technologies solve both issues, but are limited in gene throughput. To overcome these limitations we present Tangram, a method that aligns sc/snRNA-seq data to various forms of spatial data collected from the same region, including MERFISH, STARmap, smFISH, Spatial Transcriptomics (Visium) and histological images. Tangram can map any type of sc/snRNA-seq data, including multimodal data such as those from SHARE-seq, which we used to reveal spatial patterns of chromatin accessibility. We demonstrate Tangram on healthy mouse brain tissue, by reconstructing a genome-wide anatomically integrated spatial map at single-cell resolution of the visual and somatomotor areas.

Citing Articles

Optimizing Xenium In Situ data utility by quality assessment and best-practice analysis workflows.

Marco Salas S, Kuemmerle L, Mattsson-Langseth C, Tismeyer S, Avenel C, Hu T Nat Methods. 2025; .

PMID: 40082609 DOI: 10.1038/s41592-025-02617-2.


Spotiphy enables single-cell spatial whole transcriptomics across an entire section.

Yang J, Zheng Z, Jiao Y, Yu K, Bhatara S, Yang X Nat Methods. 2025; .

PMID: 40074951 DOI: 10.1038/s41592-025-02622-5.


Quantifying and interpreting biologically meaningful spatial signatures within tumor microenvironments.

Jing S, Wang H, Lin P, Yuan J, Tang Z, Li H NPJ Precis Oncol. 2025; 9(1):68.

PMID: 40069556 PMC: 11897387. DOI: 10.1038/s41698-025-00857-1.


stAI: a deep learning-based model for missing gene imputation and cell-type annotation of spatial transcriptomics.

Zou G, Shen Q, Li L, Zhang S Nucleic Acids Res. 2025; 53(5).

PMID: 40057378 PMC: 11890069. DOI: 10.1093/nar/gkaf158.


From morphology to single-cell molecules: high-resolution 3D histology in biomedicine.

Xu X, Su J, Zhu R, Li K, Zhao X, Fan J Mol Cancer. 2025; 24(1):63.

PMID: 40033282 PMC: 11874780. DOI: 10.1186/s12943-025-02240-x.


References
1.
Regev A, Teichmann S, Lander E, Amit I, Benoist C, Birney E . The Human Cell Atlas. Elife. 2017; 6. PMC: 5762154. DOI: 10.7554/eLife.27041. View

2.
Wang Q, Ding S, Li Y, Royall J, Feng D, Lesnar P . The Allen Mouse Brain Common Coordinate Framework: A 3D Reference Atlas. Cell. 2020; 181(4):936-953.e20. PMC: 8152789. DOI: 10.1016/j.cell.2020.04.007. View

3.
Ma S, Zhang B, LaFave L, Earl A, Chiang Z, Hu Y . Chromatin Potential Identified by Shared Single-Cell Profiling of RNA and Chromatin. Cell. 2020; 183(4):1103-1116.e20. PMC: 7669735. DOI: 10.1016/j.cell.2020.09.056. View

4.
Wang X, Allen W, Wright M, Sylwestrak E, Samusik N, Vesuna S . Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science. 2018; 361(6400). PMC: 6339868. DOI: 10.1126/science.aat5691. View

5.
Nitzan M, Karaiskos N, Friedman N, Rajewsky N . Gene expression cartography. Nature. 2019; 576(7785):132-137. DOI: 10.1038/s41586-019-1773-3. View