» Articles » PMID: 34616068

An Atlas of Gene Regulatory Elements in Adult Mouse Cerebrum

Abstract

The mammalian cerebrum performs high-level sensory perception, motor control and cognitive functions through highly specialized cortical and subcortical structures. Recent surveys of mouse and human brains with single-cell transcriptomics and high-throughput imaging technologies have uncovered hundreds of neural cell types distributed in different brain regions, but the transcriptional regulatory programs that are responsible for the unique identity and function of each cell type remain unknown. Here we probe the accessible chromatin in more than 800,000 individual nuclei from 45 regions that span the adult mouse isocortex, olfactory bulb, hippocampus and cerebral nuclei, and use the resulting data to map the state of 491,818 candidate cis-regulatory DNA elements in 160 distinct cell types. We find high specificity of spatial distribution for not only excitatory neurons, but also most classes of inhibitory neurons and a subset of glial cell types. We characterize the gene regulatory sequences associated with the regional specificity within these cell types. We further link a considerable fraction of the cis-regulatory elements to putative target genes expressed in diverse cerebral cell types and predict transcriptional regulators that are involved in a broad spectrum of molecular and cellular pathways in different neuronal and glial cell populations. Our results provide a foundation for comprehensive analysis of gene regulatory programs of the mammalian brain and assist in the interpretation of noncoding risk variants associated with various neurological diseases and traits in humans.

Citing Articles

From morphology to single-cell molecules: high-resolution 3D histology in biomedicine.

Xu X, Su J, Zhu R, Li K, Zhao X, Fan J Mol Cancer. 2025; 24(1):63.

PMID: 40033282 PMC: 11874780. DOI: 10.1186/s12943-025-02240-x.


Cell type-specific 3D-genome organization and transcription regulation in the brain.

Liu S, Wang C, Zheng P, Jia B, Zemke N, Ren P Sci Adv. 2025; 11(9):eadv2067.

PMID: 40009678 PMC: 11864200. DOI: 10.1126/sciadv.adv2067.


Regulatory Elements for Gene Therapy of Epilepsy.

Chesnokova E, Bal N, Alhalabi G, Balaban P Cells. 2025; 14(3).

PMID: 39937026 PMC: 11816724. DOI: 10.3390/cells14030236.


Single-cell chromatin accessibility landscape profiling reveals the diversity of epigenetic regulation in the rat nervous system.

Ma P, Duan S, Ma W, Deng Q, Yu Y, Gao P Sci Data. 2025; 12(1):140.

PMID: 39856121 PMC: 11761061. DOI: 10.1038/s41597-025-04432-y.


Single-cell analysis of the epigenome and 3D chromatin architecture in the human retina.

Yuan Y, Biswas P, Zemke N, Dang K, Wu Y, DAntonio M bioRxiv. 2025; .

PMID: 39764062 PMC: 11703273. DOI: 10.1101/2024.12.28.630634.


References
1.
Hodge R, Bakken T, Miller J, Smith K, Barkan E, Graybuck L . Conserved cell types with divergent features in human versus mouse cortex. Nature. 2019; 573(7772):61-68. PMC: 6919571. DOI: 10.1038/s41586-019-1506-7. View

2.
Fang R, Preissl S, Li Y, Hou X, Lucero J, Wang X . Comprehensive analysis of single cell ATAC-seq data with SnapATAC. Nat Commun. 2021; 12(1):1337. PMC: 7910485. DOI: 10.1038/s41467-021-21583-9. View

3.
Zhang K, Wang M, Zhao Y, Wang W . Taiji: System-level identification of key transcription factors reveals transcriptional waves in mouse embryonic development. Sci Adv. 2019; 5(3):eaav3262. PMC: 6436936. DOI: 10.1126/sciadv.aav3262. View

4.
Herculano-Houzel S, Mota B, Lent R . Cellular scaling rules for rodent brains. Proc Natl Acad Sci U S A. 2006; 103(32):12138-43. PMC: 1567708. DOI: 10.1073/pnas.0604911103. View

5.
Jones S, Tyrrell J, Wood A, Beaumont R, Ruth K, Tuke M . Genome-Wide Association Analyses in 128,266 Individuals Identifies New Morningness and Sleep Duration Loci. PLoS Genet. 2016; 12(8):e1006125. PMC: 4975467. DOI: 10.1371/journal.pgen.1006125. View