» Articles » PMID: 34242577

In vitro and In vivo Functions of SARS-CoV-2 Infection-enhancing and Neutralizing Antibodies

Abstract

SARS-CoV-2-neutralizing antibodies (NAbs) protect against COVID-19. A concern regarding SARS-CoV-2 antibodies is whether they mediate disease enhancement. Here, we isolated NAbs against the receptor-binding domain (RBD) or the N-terminal domain (NTD) of SARS-CoV-2 spike from individuals with acute or convalescent SARS-CoV-2 or a history of SARS-CoV infection. Cryo-electron microscopy of RBD and NTD antibodies demonstrated function-specific modes of binding. Select RBD NAbs also demonstrated Fc receptor-γ (FcγR)-mediated enhancement of virus infection in vitro, while five non-neutralizing NTD antibodies mediated FcγR-independent in vitro infection enhancement. However, both types of infection-enhancing antibodies protected from SARS-CoV-2 replication in monkeys and mice. Three of 46 monkeys infused with enhancing antibodies had higher lung inflammation scores compared to controls. One monkey had alveolar edema and elevated bronchoalveolar lavage inflammatory cytokines. Thus, while in vitro antibody-enhanced infection does not necessarily herald enhanced infection in vivo, increased lung inflammation can rarely occur in SARS-CoV-2 antibody-infused macaques.

Citing Articles

NIEAs elicited by wild-type SARS-CoV-2 primary infection fail to enhance the infectivity of Omicron variants.

Gui Q, Wang H, Liu C, Li W, Zhou B, Tang S Virol J. 2025; 22(1):45.

PMID: 39994733 PMC: 11849304. DOI: 10.1186/s12985-025-02667-0.


Antibody-dependent enhancement of coronaviruses.

Tao T, Tian L, Ke J, Zhang C, Li M, Xu X Int J Biol Sci. 2025; 21(4):1686-1704.

PMID: 39990674 PMC: 11844293. DOI: 10.7150/ijbs.96112.


Antibody-dependent enhancement of ORFV uptake into host cells.

Tang X, Zhang C, Geng Q, Chen D, Ma W Virulence. 2025; 16(1):2466503.

PMID: 39954287 PMC: 11834454. DOI: 10.1080/21505594.2025.2466503.


Tracking Immunity: An Increased Number of COVID-19 Boosters Increases the Longevity of Anti-RBD and Anti-RBD-Neutralizing Antibodies.

Hou C, Williams S, Boyle V, Roeder A, Bobbett B, Garcia I Vaccines (Basel). 2025; 13(1).

PMID: 39852840 PMC: 11769131. DOI: 10.3390/vaccines13010061.


Detrimental Effects of Anti-Nucleocapsid Antibodies in SARS-CoV-2 Infection, Reinfection, and the Post-Acute Sequelae of COVID-19.

Nakayama E, Shioda T Pathogens. 2025; 13(12.

PMID: 39770368 PMC: 11728538. DOI: 10.3390/pathogens13121109.


References
1.
Edwards R, Mansouri K, Stalls V, Manne K, Watts B, Parks R . Cold sensitivity of the SARS-CoV-2 spike ectodomain. Nat Struct Mol Biol. 2021; 28(2):128-131. PMC: 7878407. DOI: 10.1038/s41594-020-00547-5. View

2.
Korber B, Fischer W, Gnanakaran S, Yoon H, Theiler J, Abfalterer W . Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell. 2020; 182(4):812-827.e19. PMC: 7332439. DOI: 10.1016/j.cell.2020.06.043. View

3.
Baum A, Fulton B, Wloga E, Copin R, Pascal K, Russo V . Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies. Science. 2020; 369(6506):1014-1018. PMC: 7299283. DOI: 10.1126/science.abd0831. View

4.
Baden L, El Sahly H, Essink B, Kotloff K, Frey S, Novak R . Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2020; 384(5):403-416. PMC: 7787219. DOI: 10.1056/NEJMoa2035389. View

5.
Sempowski G, Saunders K, Acharya P, Wiehe K, Haynes B . Pandemic Preparedness: Developing Vaccines and Therapeutic Antibodies For COVID-19. Cell. 2020; 181(7):1458-1463. PMC: 7250787. DOI: 10.1016/j.cell.2020.05.041. View