» Articles » PMID: 34188098

Long-term Cancer Survival Prediction Using Multimodal Deep Learning

Overview
Journal Sci Rep
Specialty Science
Date 2021 Jun 30
PMID 34188098
Citations 47
Authors
Affiliations
Soon will be listed here.
Abstract

The age of precision medicine demands powerful computational techniques to handle high-dimensional patient data. We present MultiSurv, a multimodal deep learning method for long-term pan-cancer survival prediction. MultiSurv uses dedicated submodels to establish feature representations of clinical, imaging, and different high-dimensional omics data modalities. A data fusion layer aggregates the multimodal representations, and a prediction submodel generates conditional survival probabilities for follow-up time intervals spanning several decades. MultiSurv is the first non-linear and non-proportional survival prediction method that leverages multimodal data. In addition, MultiSurv can handle missing data, including single values and complete data modalities. MultiSurv was applied to data from 33 different cancer types and yields accurate pan-cancer patient survival curves. A quantitative comparison with previous methods showed that Multisurv achieves the best results according to different time-dependent metrics. We also generated visualizations of the learned multimodal representation of MultiSurv, which revealed insights on cancer characteristics and heterogeneity.

Citing Articles

Towards an interpretable deep learning model of cancer.

Nilsson A, Meimetis N, Lauffenburger D NPJ Precis Oncol. 2025; 9(1):46.

PMID: 39948231 PMC: 11825879. DOI: 10.1038/s41698-025-00822-y.


Decoding pan-cancer treatment outcomes using multimodal real-world data and explainable artificial intelligence.

Keyl J, Keyl P, Montavon G, Hosch R, Brehmer A, Mochmann L Nat Cancer. 2025; 6(2):307-322.

PMID: 39885364 PMC: 11864985. DOI: 10.1038/s43018-024-00891-1.


LightweightUNet: Multimodal Deep Learning with GAN-Augmented Imaging Data for Efficient Breast Cancer Detection.

Rai H, Yoo J, Agarwal S, Agarwal N Bioengineering (Basel). 2025; 12(1).

PMID: 39851348 PMC: 11761908. DOI: 10.3390/bioengineering12010073.


Artificial intelligence and machine learning in cell-free-DNA-based diagnostics.

Tsui W, Ding S, Jiang P, Lo Y Genome Res. 2025; 35(1):1-19.

PMID: 39843210 PMC: 11789496. DOI: 10.1101/gr.278413.123.


Case-Base Neural Network: Survival analysis with time-varying, higher-order interactions.

Islam J, Turgeon M, Sladek R, Bhatnagar S Mach Learn Appl. 2025; 16.

PMID: 39802089 PMC: 11720922. DOI: 10.1016/j.mlwa.2024.100535.


References
1.
Olivier M, Asmis R, Hawkins G, Howard T, Cox L . The Need for Multi-Omics Biomarker Signatures in Precision Medicine. Int J Mol Sci. 2019; 20(19). PMC: 6801754. DOI: 10.3390/ijms20194781. View

2.
BROWN S, Branford A, Moran W . On the use of artificial neural networks for the analysis of survival data. IEEE Trans Neural Netw. 1997; 8(5):1071-7. DOI: 10.1109/72.623209. View

3.
Gensheimer M, Narasimhan B . A scalable discrete-time survival model for neural networks. PeerJ. 2019; 7:e6257. PMC: 6348952. DOI: 10.7717/peerj.6257. View

4.
Virtanen P, Gommers R, Oliphant T, Haberland M, Reddy T, Cournapeau D . SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. 2020; 17(3):261-272. PMC: 7056644. DOI: 10.1038/s41592-019-0686-2. View

5.
Zhao L, Feng D . Deep Neural Networks for Survival Analysis Using Pseudo Values. IEEE J Biomed Health Inform. 2020; 24(11):3308-3314. PMC: 8056290. DOI: 10.1109/JBHI.2020.2980204. View