» Articles » PMID: 26017442

Deep Learning

Overview
Journal Nature
Specialty Science
Date 2015 May 29
PMID 26017442
Citations 8943
Authors
Affiliations
Soon will be listed here.
Abstract

Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.

Citing Articles

Global output of clinical application research on artificial intelligence in the past decade: a scientometric study and science mapping.

Shi J, Yue S, Chen H, Fang F, Wang X, Xue J Syst Rev. 2025; 14(1):62.

PMID: 40089747 DOI: 10.1186/s13643-025-02779-2.


Risk prediction of hyperuricemia based on particle swarm fusion machine learning solely dependent on routine blood tests.

Fang M, Pan C, Yu X, Li W, Wang B, Zhou H BMC Med Inform Decis Mak. 2025; 25(1):131.

PMID: 40087711 DOI: 10.1186/s12911-025-02956-2.


Global or local modeling for XGBoost in geospatial studies upon simulated data and German COVID-19 infection forecasting.

Cheng X, Ma J Sci Rep. 2025; 15(1):8858.

PMID: 40087346 DOI: 10.1038/s41598-025-92995-6.


How AI can help us beat AMR.

Arnold A, McLellan S, Stokes J NPJ Antimicrob Resist. 2025; 3(1):18.

PMID: 40082590 PMC: 11906734. DOI: 10.1038/s44259-025-00085-4.


Attention-enhanced and integrated deep learning approach for fishing vessel classification based on multiple features.

Cheng X, Wang J, Chen X, Zhang F Sci Rep. 2025; 15(1):8642.

PMID: 40082493 PMC: 11907068. DOI: 10.1038/s41598-025-88158-2.


References
1.
Felleman D, Van Essen D . Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex. 1991; 1(1):1-47. DOI: 10.1093/cercor/1.1.1-a. View

2.
Ranzato M, Mnih V, Susskind J, Hinton G . Modeling natural images using gated MRFs. IEEE Trans Pattern Anal Mach Intell. 2013; 35(9):2206-22. DOI: 10.1109/TPAMI.2013.29. View

3.
Turaga S, Murray J, Jain V, Roth F, Helmstaedter M, Briggman K . Convolutional networks can learn to generate affinity graphs for image segmentation. Neural Comput. 2009; 22(2):511-38. DOI: 10.1162/neco.2009.10-08-881. View

4.
Bengio Y, Simard P, Frasconi P . Learning long-term dependencies with gradient descent is difficult. IEEE Trans Neural Netw. 1994; 5(2):157-66. DOI: 10.1109/72.279181. View

5.
Helmstaedter M, Briggman K, Turaga S, Jain V, Seung H, Denk W . Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature. 2013; 500(7461):168-74. DOI: 10.1038/nature12346. View