6.
Fetit A, Doney A, Hogg S, Wang R, MacGillivray T, Wardlaw J
. A multimodal approach to cardiovascular risk stratification in patients with type 2 diabetes incorporating retinal, genomic and clinical features. Sci Rep. 2019; 9(1):3591.
PMC: 6401035.
DOI: 10.1038/s41598-019-40403-1.
View
7.
Wang H, Avillach P
. Diagnostic Classification and Prognostic Prediction Using Common Genetic Variants in Autism Spectrum Disorder: Genotype-Based Deep Learning. JMIR Med Inform. 2021; 9(4):e24754.
PMC: 8060867.
DOI: 10.2196/24754.
View
8.
Wiggins L, Durkin M, Esler A, Lee L, Zahorodny W, Rice C
. Disparities in Documented Diagnoses of Autism Spectrum Disorder Based on Demographic, Individual, and Service Factors. Autism Res. 2019; 13(3):464-473.
PMC: 7521364.
DOI: 10.1002/aur.2255.
View
9.
Wang Y, Wang J, Wu F, Hayrat R, Liu J
. AIMAFE: Autism spectrum disorder identification with multi-atlas deep feature representation and ensemble learning. J Neurosci Methods. 2020; 343:108840.
DOI: 10.1016/j.jneumeth.2020.108840.
View
10.
Yang T, Al-Duailij M, Bozdag S, Saeed F
. Classification of Autism Spectrum Disorder Using rs-fMRI data and Graph Convolutional Networks. Proc IEEE Int Conf Big Data. 2024; 2022:3131-3138.
PMC: 11215804.
DOI: 10.1109/bigdata55660.2022.10021070.
View
11.
Lynch C, Liston C
. New machine-learning technologies for computer-aided diagnosis. Nat Med. 2018; 24(9):1304-1305.
DOI: 10.1038/s41591-018-0178-4.
View
12.
Yao Z, Hu B, Xie Y, Moore P, Zheng J
. A review of structural and functional brain networks: small world and atlas. Brain Inform. 2016; 2(1):45-52.
PMC: 4883160.
DOI: 10.1007/s40708-015-0009-z.
View
13.
Osorio D
. Interpretable multi-modal data integration. Nat Comput Sci. 2024; 2(1):8-9.
DOI: 10.1038/s43588-021-00186-w.
View
14.
Megerian J, Dey S, Melmed R, Coury D, Lerner M, Nicholls C
. Evaluation of an artificial intelligence-based medical device for diagnosis of autism spectrum disorder. NPJ Digit Med. 2022; 5(1):57.
PMC: 9072329.
DOI: 10.1038/s41746-022-00598-6.
View
15.
Li X, Dvornek N, Zhuang J, Ventola P, Duncan J
. Graph Embedding Using Infomax for ASD Classification and Brain Functional Difference Detection. Proc SPIE Int Soc Opt Eng. 2020; 11317.
PMC: 7569478.
DOI: 10.1117/12.2549451.
View
16.
Fouss F, Francoisse K, Yen L, Pirotte A, Saerens M
. An experimental investigation of kernels on graphs for collaborative recommendation and semisupervised classification. Neural Netw. 2012; 31:53-72.
DOI: 10.1016/j.neunet.2012.03.001.
View
17.
Eslami T, Mirjalili V, Fong A, Laird A, Saeed F
. ASD-DiagNet: A Hybrid Learning Approach for Detection of Autism Spectrum Disorder Using fMRI Data. Front Neuroinform. 2019; 13:70.
PMC: 6890833.
DOI: 10.3389/fninf.2019.00070.
View
18.
Boxhoorn S, Schutz M, Muhlherr A, Mossinger H, Luckhardt C, Freitag C
. The effect of perceptual expectation on processing gain, attention and the perceptual decision bias in children and adolescents with Autism Spectrum Disorder (ASD). Sci Rep. 2022; 12(1):21688.
PMC: 9755142.
DOI: 10.1038/s41598-022-25971-z.
View
19.
Maenner M, Warren Z, Williams A, Amoakohene E, Bakian A, Bilder D
. Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years - Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2020. MMWR Surveill Summ. 2023; 72(2):1-14.
PMC: 10042614.
DOI: 10.15585/mmwr.ss7202a1.
View
20.
Song X, Zhou F, Frangi A, Cao J, Xiao X, Lei Y
. Multicenter and Multichannel Pooling GCN for Early AD Diagnosis Based on Dual-Modality Fused Brain Network. IEEE Trans Med Imaging. 2022; 42(2):354-367.
DOI: 10.1109/TMI.2022.3187141.
View