» Articles » PMID: 33972800

Wireless Multilateral Devices for Optogenetic Studies of Individual and Social Behaviors

Abstract

Advanced technologies for controlled delivery of light to targeted locations in biological tissues are essential to neuroscience research that applies optogenetics in animal models. Fully implantable, miniaturized devices with wireless control and power-harvesting strategies offer an appealing set of attributes in this context, particularly for studies that are incompatible with conventional fiber-optic approaches or battery-powered head stages. Limited programmable control and narrow options in illumination profiles constrain the use of existing devices. The results reported here overcome these drawbacks via two platforms, both with real-time user programmability over multiple independent light sources, in head-mounted and back-mounted designs. Engineering studies of the optoelectronic and thermal properties of these systems define their capabilities and key design considerations. Neuroscience applications demonstrate that induction of interbrain neuronal synchrony in the medial prefrontal cortex shapes social interaction within groups of mice, highlighting the power of real-time subject-specific programmability of the wireless optogenetic platforms introduced here.

Citing Articles

Design considerations for optogenetic applications of soft micro-LED-based device systems across diverse nervous systems.

Lee J, Kim T, Cho S, Shin J, Yeo W, Kim T Bioact Mater. 2025; 48:217-241.

PMID: 40046014 PMC: 11880665. DOI: 10.1016/j.bioactmat.2025.02.006.


Wireless Devices for Optical Brain Stimulation: A Review of Current Developments for Optogenetic Applications in Freely Moving Mice.

Silva P, Jacinto L Cell Mol Bioeng. 2025; 18(1):1-13.

PMID: 39949492 PMC: 11813840. DOI: 10.1007/s12195-024-00832-z.


Liquid-based encapsulation for implantable bioelectronics across broad pH environments.

Sun H, Xue X, Robilotto G, Zhang X, Son C, Chen X Nat Commun. 2025; 16(1):1019.

PMID: 39863617 PMC: 11762702. DOI: 10.1038/s41467-025-55992-x.


Fabrication of nonplanar tapered fibers to integrate optical and electrical signals for neural interfaces in vivo.

Balena A, Bianco M, Andriani M, Montinaro C, Spagnolo B, Pisanello M Nat Protoc. 2025; .

PMID: 39843597 DOI: 10.1038/s41596-024-01105-9.


Transcranial optogenetic brain modulator for precise bimodal neuromodulation in multiple brain regions.

Shin H, Nam M, Lee S, Yang S, Yang E, Jung J Nat Commun. 2024; 15(1):10423.

PMID: 39613730 PMC: 11607408. DOI: 10.1038/s41467-024-54759-0.


References
1.
Bassett D, Sporns O . Network neuroscience. Nat Neurosci. 2017; 20(3):353-364. PMC: 5485642. DOI: 10.1038/nn.4502. View

2.
Klapoetke N, Murata Y, Kim S, Pulver S, Birdsey-Benson A, Cho Y . Independent optical excitation of distinct neural populations. Nat Methods. 2014; 11(3):338-46. PMC: 3943671. DOI: 10.1038/nmeth.2836. View

3.
Boyden E, Zhang F, Bamberg E, Nagel G, Deisseroth K . Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci. 2005; 8(9):1263-8. DOI: 10.1038/nn1525. View

4.
Deisseroth K . Optogenetics. Nat Methods. 2010; 8(1):26-9. PMC: 6814250. DOI: 10.1038/nmeth.f.324. View

5.
Yizhar O, Fenno L, Davidson T, Mogri M, Deisseroth K . Optogenetics in neural systems. Neuron. 2011; 71(1):9-34. DOI: 10.1016/j.neuron.2011.06.004. View