» Articles » PMID: 26551059

Soft, Stretchable, Fully Implantable Miniaturized Optoelectronic Systems for Wireless Optogenetics

Abstract

Optogenetics allows rapid, temporally specific control of neuronal activity by targeted expression and activation of light-sensitive proteins. Implementation typically requires remote light sources and fiber-optic delivery schemes that impose considerable physical constraints on natural behaviors. In this report we bypass these limitations using technologies that combine thin, mechanically soft neural interfaces with fully implantable, stretchable wireless radio power and control systems. The resulting devices achieve optogenetic modulation of the spinal cord and peripheral nervous system. This is demonstrated with two form factors; stretchable film appliqués that interface directly with peripheral nerves, and flexible filaments that insert into the narrow confines of the spinal epidural space. These soft, thin devices are minimally invasive, and histological tests suggest they can be used in chronic studies. We demonstrate the power of this technology by modulating peripheral and spinal pain circuitry, providing evidence for the potential widespread use of these devices in research and future clinical applications of optogenetics outside the brain.

Citing Articles

Design considerations for optogenetic applications of soft micro-LED-based device systems across diverse nervous systems.

Lee J, Kim T, Cho S, Shin J, Yeo W, Kim T Bioact Mater. 2025; 48:217-241.

PMID: 40046014 PMC: 11880665. DOI: 10.1016/j.bioactmat.2025.02.006.


Intrinsic adaptive plasticity in mouse and human sensory neurons.

McIlvried L, Del Rosario J, Pullen M, Wangzhou A, Sheahan T, Shepherd A J Gen Physiol. 2024; 157(1).

PMID: 39688836 PMC: 11651306. DOI: 10.1085/jgp.202313488.


Ultrathin rubbery bio-optoelectronic stimulators for untethered cardiac stimulation.

Rao Z, Ershad F, Guan Y, Mesquita F, Curty da Costa E, Morales-Garza M Sci Adv. 2024; 10(49):eadq5061.

PMID: 39642227 PMC: 11623305. DOI: 10.1126/sciadv.adq5061.


Wireless Modular Implantable Neural Device with One-touch Magnetic Assembly for Versatile Neuromodulation.

Kang I, Bilbily J, Kim C, Shi C, Madasu M, Jeong E Adv Sci (Weinh). 2024; 12(4):e2406576.

PMID: 39624974 PMC: 11775568. DOI: 10.1002/advs.202406576.


Significant Advancements and Evolutions in Chimeric Antigen Receptor Design.

Gaimari A, De Lucia A, Nicolini F, Mazzotti L, Maltoni R, Rughi G Int J Mol Sci. 2024; 25(22).

PMID: 39596267 PMC: 11595069. DOI: 10.3390/ijms252212201.


References
1.
Golden J, Demaro 3rd J, Knoten A, Hoshi M, Pehek E, Johnson Jr E . Dopamine-dependent compensation maintains motor behavior in mice with developmental ablation of dopaminergic neurons. J Neurosci. 2013; 33(43):17095-107. PMC: 3807031. DOI: 10.1523/JNEUROSCI.0890-13.2013. View

2.
Towne C, Montgomery K, Iyer S, Deisseroth K, Delp S . Optogenetic control of targeted peripheral axons in freely moving animals. PLoS One. 2013; 8(8):e72691. PMC: 3749160. DOI: 10.1371/journal.pone.0072691. View

3.
Fink D, Wechuck J, Mata M, Glorioso J, Goss J, Krisky D . Gene therapy for pain: results of a phase I clinical trial. Ann Neurol. 2011; 70(2):207-12. PMC: 3152623. DOI: 10.1002/ana.22446. View

4.
Yokoyama H, Sasaki K, Franks M, Goins W, Goss J, de Groat W . Gene therapy for bladder overactivity and nociception with herpes simplex virus vectors expressing preproenkephalin. Hum Gene Ther. 2010; 20(1):63-71. PMC: 2855255. DOI: 10.1089/hum.2008.094. View

5.
Daou I, Tuttle A, Longo G, Wieskopf J, Bonin R, Ase A . Remote optogenetic activation and sensitization of pain pathways in freely moving mice. J Neurosci. 2013; 33(47):18631-40. PMC: 6618811. DOI: 10.1523/JNEUROSCI.2424-13.2013. View