6.
Buzsaki G
. Large-scale recording of neuronal ensembles. Nat Neurosci. 2004; 7(5):446-51.
DOI: 10.1038/nn1233.
View
7.
Jun J, Steinmetz N, Siegle J, Denman D, Bauza M, Barbarits B
. Fully integrated silicon probes for high-density recording of neural activity. Nature. 2017; 551(7679):232-236.
PMC: 5955206.
DOI: 10.1038/nature24636.
View
8.
Hochberg L, Bacher D, Jarosiewicz B, Masse N, Simeral J, Vogel J
. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature. 2012; 485(7398):372-5.
PMC: 3640850.
DOI: 10.1038/nature11076.
View
9.
Buzsaki G, Stark E, Berenyi A, Khodagholy D, Kipke D, Yoon E
. Tools for probing local circuits: high-density silicon probes combined with optogenetics. Neuron. 2015; 86(1):92-105.
PMC: 4392339.
DOI: 10.1016/j.neuron.2015.01.028.
View
10.
Liu J, Fu T, Cheng Z, Hong G, Zhou T, Jin L
. Syringe-injectable electronics. Nat Nanotechnol. 2015; 10(7):629-636.
PMC: 4591029.
DOI: 10.1038/nnano.2015.115.
View
11.
Viventi J, Kim D, Vigeland L, Frechette E, Blanco J, Kim Y
. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat Neurosci. 2011; 14(12):1599-605.
PMC: 3235709.
DOI: 10.1038/nn.2973.
View
12.
Yang X, Zhou T, Zwang T, Hong G, Zhao Y, Viveros R
. Bioinspired neuron-like electronics. Nat Mater. 2019; 18(5):510-517.
PMC: 6474791.
DOI: 10.1038/s41563-019-0292-9.
View
13.
Minev I, Musienko P, Hirsch A, Barraud Q, Wenger N, Moraud E
. Biomaterials. Electronic dura mater for long-term multimodal neural interfaces. Science. 2015; 347(6218):159-63.
DOI: 10.1126/science.1260318.
View
14.
Kim C, Ku M, Qazi R, Nam H, Park J, Nam K
. Soft subdermal implant capable of wireless battery charging and programmable controls for applications in optogenetics. Nat Commun. 2021; 12(1):535.
PMC: 7822865.
DOI: 10.1038/s41467-020-20803-y.
View
15.
Yang Y, Wu M, Vazquez-Guardado A, Wegener A, Grajales-Reyes J, Deng Y
. Wireless multilateral devices for optogenetic studies of individual and social behaviors. Nat Neurosci. 2021; 24(7):1035-1045.
PMC: 8694284.
DOI: 10.1038/s41593-021-00849-x.
View
16.
Montgomery K, Yeh A, Ho J, Tsao V, Mohan Iyer S, Grosenick L
. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nat Methods. 2015; 12(10):969-74.
PMC: 5507210.
DOI: 10.1038/nmeth.3536.
View
17.
Shin G, Gomez A, Al-Hasani R, Jeong Y, Kim J, Xie Z
. Flexible Near-Field Wireless Optoelectronics as Subdermal Implants for Broad Applications in Optogenetics. Neuron. 2017; 93(3):509-521.e3.
PMC: 5377903.
DOI: 10.1016/j.neuron.2016.12.031.
View
18.
Herculano-Houzel S
. The human brain in numbers: a linearly scaled-up primate brain. Front Hum Neurosci. 2009; 3:31.
PMC: 2776484.
DOI: 10.3389/neuro.09.031.2009.
View
19.
Schwarz D, Lebedev M, Hanson T, Dimitrov D, Lehew G, Meloy J
. Chronic, wireless recordings of large-scale brain activity in freely moving rhesus monkeys. Nat Methods. 2014; 11(6):670-6.
PMC: 4161037.
DOI: 10.1038/nmeth.2936.
View
20.
Capogrosso M, Milekovic T, Borton D, Wagner F, Moraud E, Mignardot J
. A brain-spine interface alleviating gait deficits after spinal cord injury in primates. Nature. 2016; 539(7628):284-288.
PMC: 5108412.
DOI: 10.1038/nature20118.
View