» Articles » PMID: 33835701

CODEX, a Neural Network Approach to Explore Signaling Dynamics Landscapes

Overview
Journal Mol Syst Biol
Specialty Molecular Biology
Date 2021 Apr 9
PMID 33835701
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

Current studies of cell signaling dynamics that use live cell fluorescent biosensors routinely yield thousands of single-cell, heterogeneous, multi-dimensional trajectories. Typically, the extraction of relevant information from time series data relies on predefined, human-interpretable features. Without a priori knowledge of the system, the predefined features may fail to cover the entire spectrum of dynamics. Here we present CODEX, a data-driven approach based on convolutional neural networks (CNNs) that identifies patterns in time series. It does not require a priori information about the biological system and the insights into the data are built through explanations of the CNNs' predictions. CODEX provides several views of the data: visualization of all the single-cell trajectories in a low-dimensional space, identification of prototypic trajectories, and extraction of distinctive motifs. We demonstrate how CODEX can provide new insights into ERK and Akt signaling in response to various growth factors, and we recapitulate findings in p53 and TGFβ-SMAD2 signaling.

Citing Articles

DynProfiler: a Python package for comprehensive analysis and interpretation of signaling dynamics leveraged by deep learning techniques.

Tsutsui M, Okada M Bioinform Adv. 2024; 4(1):vbae145.

PMID: 39391633 PMC: 11464416. DOI: 10.1093/bioadv/vbae145.


Mathematical Modeling and Inference of Epidermal Growth Factor-Induced Mitogen-Activated Protein Kinase Cell Signaling Pathways.

Feng J, Zhang X, Tian T Int J Mol Sci. 2024; 25(18).

PMID: 39337687 PMC: 11432143. DOI: 10.3390/ijms251810204.


Getting real about synthetic data ethics : Are AI ethics principles a good starting point for synthetic data ethics?.

Shanley D, Hogenboom J, Lysen F, Wee L, Lobo Gomes A, Dekker A EMBO Rep. 2024; 25(5):2152-2155.

PMID: 38388694 PMC: 11094102. DOI: 10.1038/s44319-024-00101-0.


Machine learning inference of continuous single-cell state transitions during myoblast differentiation and fusion.

Shakarchy A, Zarfati G, Hazak A, Mealem R, Huk K, Ziv T Mol Syst Biol. 2024; 20(3):217-241.

PMID: 38238594 PMC: 10912675. DOI: 10.1038/s44320-024-00010-3.


A guide to ERK dynamics, part 1: mechanisms and models.

Ram A, Murphy D, DeCuzzi N, Patankar M, Hu J, Pargett M Biochem J. 2023; 480(23):1887-1907.

PMID: 38038974 PMC: 10754288. DOI: 10.1042/BCJ20230276.


References
1.
Bugaj L, Sabnis A, Mitchell A, Garbarino J, Toettcher J, Bivona T . Cancer mutations and targeted drugs can disrupt dynamic signal encoding by the Ras-Erk pathway. Science. 2018; 361(6405). PMC: 6430110. DOI: 10.1126/science.aao3048. View

2.
Lahav G, Rosenfeld N, Sigal A, Geva-Zatorsky N, Levine A, Elowitz M . Dynamics of the p53-Mdm2 feedback loop in individual cells. Nat Genet. 2004; 36(2):147-50. DOI: 10.1038/ng1293. View

3.
Sampattavanich S, Steiert B, Kramer B, Gyori B, Albeck J, Sorger P . Encoding Growth Factor Identity in the Temporal Dynamics of FOXO3 under the Combinatorial Control of ERK and AKT Kinases. Cell Syst. 2018; 6(6):664-678.e9. PMC: 6322215. DOI: 10.1016/j.cels.2018.05.004. View

4.
Blum Y, Mikelson J, Dobrzynski M, Ryu H, Jacques M, Jeon N . Temporal perturbation of ERK dynamics reveals network architecture of FGF2/MAPK signaling. Mol Syst Biol. 2019; 15(11):e8947. PMC: 6864398. DOI: 10.15252/msb.20198947. View

5.
Ryu H, Chung M, Dobrzynski M, Fey D, Blum Y, Lee S . Frequency modulation of ERK activation dynamics rewires cell fate. Mol Syst Biol. 2015; 11(11):838. PMC: 4670727. DOI: 10.15252/msb.20156458. View