» Articles » PMID: 33767358

Structure Analysis Suggests Ess1 Isomerizes the Carboxy-terminal Domain of RNA Polymerase II Via a Bivalent Anchoring Mechanism

Overview
Journal Commun Biol
Specialty Biology
Date 2021 Mar 26
PMID 33767358
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Accurate gene transcription in eukaryotes depends on isomerization of serine-proline bonds within the carboxy-terminal domain (CTD) of RNA polymerase II. Isomerization is part of the "CTD code" that regulates recruitment of proteins required for transcription and co-transcriptional RNA processing. Saccharomyces cerevisiae Ess1 and its human ortholog, Pin1, are prolyl isomerases that engage the long heptad repeat (YSPTSPS) of the CTD by an unknown mechanism. Here, we used an integrative structural approach to decipher Ess1 interactions with the CTD. Ess1 has a rigid linker between its WW and catalytic domains that enforces a distance constraint for bivalent interaction with the ends of long CTD substrates (≥4-5 heptad repeats). Our binding results suggest that the Ess1 WW domain anchors the proximal end of the CTD substrate during isomerization, and that linker divergence may underlie evolution of substrate specificity.

Citing Articles

Pin1 WW Domain Ligand Library Synthesized with an Easy Solid-Phase Phosphorylating Reagent.

Chen X, Mercedes-Camacho A, Wilson K, Bouchard J, Peng J, Etzkorn F Biochemistry. 2024; 63(21):2803-2815.

PMID: 39377814 PMC: 11542186. DOI: 10.1021/acs.biochem.4c00231.


A novel bivalent interaction mode underlies a non-catalytic mechanism for Pin1-mediated protein kinase C regulation.

Chen X, Dixit K, Yang Y, McDermott M, Imam H, Bankaitis V Elife. 2024; 13.

PMID: 38687676 PMC: 11060717. DOI: 10.7554/eLife.92884.


Regulation of eukaryotic protein kinases by Pin1, a peptidyl-prolyl isomerase.

Chen X, Igumenova T Adv Biol Regul. 2022; 87:100938.

PMID: 36496344 PMC: 9992314. DOI: 10.1016/j.jbior.2022.100938.


Coevolution of the Ess1-CTD axis in polar fungi suggests a role for phase separation in cold tolerance.

Palumbo R, McKean N, Leatherman E, Namitz K, Connell L, Wolfe A Sci Adv. 2022; 8(36):eabq3235.

PMID: 36070379 PMC: 9451162. DOI: 10.1126/sciadv.abq3235.


A nuclear proteome localization screen reveals the exquisite specificity of Gpn2 in RNA polymerase biogenesis.

Minaker S, Kofoed M, Hieter P, Stirling P Cell Cycle. 2021; 20(14):1361-1373.

PMID: 34180355 PMC: 8344759. DOI: 10.1080/15384101.2021.1943879.

References
1.
McNaughton L, Li Z, Van Roey P, Hanes S, LeMaster D . Restricted domain mobility in the Candida albicans Ess1 prolyl isomerase. Biochim Biophys Acta. 2010; 1804(7):1537-41. PMC: 2951753. DOI: 10.1016/j.bbapap.2010.03.005. View

2.
Hall J, Fushman D . Characterization of the overall and local dynamics of a protein with intermediate rotational anisotropy: Differentiating between conformational exchange and anisotropic diffusion in the B3 domain of protein G. J Biomol NMR. 2003; 27(3):261-75. DOI: 10.1023/a:1025467918856. View

3.
Jacobs D, Saxena K, Vogtherr M, Bernado P, Pons M, Fiebig K . Peptide binding induces large scale changes in inter-domain mobility in human Pin1. J Biol Chem. 2003; 278(28):26174-82. DOI: 10.1074/jbc.M300796200. View

4.
Zhang Y, Daum S, Wildemann D, Zhou X, Verdecia M, Bowman M . Structural basis for high-affinity peptide inhibition of human Pin1. ACS Chem Biol. 2007; 2(5):320-8. PMC: 2692202. DOI: 10.1021/cb7000044. View

5.
Berlin K, Longhini A, Dayie T, Fushman D . Deriving quantitative dynamics information for proteins and RNAs using ROTDIF with a graphical user interface. J Biomol NMR. 2013; 57(4):333-52. PMC: 3939081. DOI: 10.1007/s10858-013-9791-1. View