» Articles » PMID: 33730572

Translational Adaptation of Human Viruses to the Tissues They Infect

Overview
Journal Cell Rep
Publisher Cell Press
Date 2021 Mar 17
PMID 33730572
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

Viruses need to hijack the translational machinery of the host cell for a productive infection to happen. However, given the dynamic landscape of tRNA pools among tissues, it is unclear whether different viruses infecting different tissues have adapted their codon usage toward their tropism. Here, we collect the coding sequences of 502 human-infecting viruses and determine that tropism explains changes in codon usage. Using the tRNA abundances across 23 human tissues from The Cancer Genome Atlas (TCGA), we build an in silico model of translational efficiency that validates the correspondence of the viral codon usage with the translational machinery of their tropism. For instance, we detect that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is specifically adapted to the upper respiratory tract and alveoli. Furthermore, this correspondence is specifically defined in early viral proteins. The observed tissue-specific translational efficiency could be useful for the development of antiviral therapies and vaccines.

Citing Articles

Computational Analysis of MDR1 Variants Predicts Effect on Cancer Cells via their Effect on mRNA Folding.

Gutman T, Tuller T PLoS Comput Biol. 2024; 20(12):e1012685.

PMID: 39724131 PMC: 11670953. DOI: 10.1371/journal.pcbi.1012685.


tRNA-Ser-UGA efficiently promotes the rapid release of duck hepatitis A virus from infected enterocytes and its remote dissemination to hepatocytes.

Ou X, Gou Y, Gong L, Lin X, Liu Y, Yang W Poult Sci. 2024; 104(2):104655.

PMID: 39708671 PMC: 11729666. DOI: 10.1016/j.psj.2024.104655.


Why HPV16? Why, now, HPV42? How the discovery of HPV42 in rare cancers provides an opportunity to challenge our understanding about the transition between health and disease for common members of the healthy microbiota.

Bravo I, Belkhir S, Paget-Bailly P FEMS Microbiol Rev. 2024; 48(6).

PMID: 39562287 PMC: 11644485. DOI: 10.1093/femsre/fuae029.


SARS-CoV-2 Displays a Suboptimal Codon Usage Bias for Efficient Translation in Human Cells Diverted by Hijacking the tRNA Epitranscriptome.

Eldin P, David A, Hirtz C, Battini J, Briant L Int J Mol Sci. 2024; 25(21).

PMID: 39519170 PMC: 11546939. DOI: 10.3390/ijms252111614.


mRNA Technology and Mucosal Immunization.

Toniolo A, Maccari G, Camussi G Vaccines (Basel). 2024; 12(6).

PMID: 38932399 PMC: 11209623. DOI: 10.3390/vaccines12060670.


References
1.
Lorenz R, Bernhart S, Honer Zu Siederdissen C, Tafer H, Flamm C, Stadler P . ViennaRNA Package 2.0. Algorithms Mol Biol. 2011; 6:26. PMC: 3319429. DOI: 10.1186/1748-7188-6-26. View

2.
Mioduser O, Goz E, Tuller T . Significant differences in terms of codon usage bias between bacteriophage early and late genes: a comparative genomics analysis. BMC Genomics. 2017; 18(1):866. PMC: 5683454. DOI: 10.1186/s12864-017-4248-7. View

3.
Alexaki A, Kames J, Holcomb D, Athey J, Santana-Quintero L, Lam P . Codon and Codon-Pair Usage Tables (CoCoPUTs): Facilitating Genetic Variation Analyses and Recombinant Gene Design. J Mol Biol. 2019; 431(13):2434-2441. DOI: 10.1016/j.jmb.2019.04.021. View

4.
Raj V, Mou H, Smits S, Dekkers D, Muller M, Dijkman R . Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature. 2013; 495(7440):251-4. PMC: 7095326. DOI: 10.1038/nature12005. View

5.
Dos Reis M, Savva R, Wernisch L . Solving the riddle of codon usage preferences: a test for translational selection. Nucleic Acids Res. 2004; 32(17):5036-44. PMC: 521650. DOI: 10.1093/nar/gkh834. View